期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《能源前沿(英文)》 >> 2020年 第14卷 第3期 doi: 10.1007/s11708-020-0809-6

Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system

MIIT Key Laboratory of Thermal Control of Electronic Equipment, and Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

录用日期: 2020-04-27 发布日期: 2020-04-27

下一篇 上一篇

摘要

The coal and biomass coupling power generation technology is considered as a promising technology for energy conservation and emission reduction. In this paper, a novel coal and biomass indirect coupling system is proposed based on the technology of biomass gasification and co-combustion of coal and gasification gas. For the sake of comparison, a coal and biomass direct coupling system is also introduced based on the technology of co-combustion of coal and biomass. The process of the direct and the indirect coupling system is simulated. The thermodynamic and economic performances of two systems are analyzed and compared. The simulation indicates that the thermodynamic performance of the indirect coupling system is slightly worse, but the economic performance is better than that of the direct coupling system. When the blending ratio of biomass is 20%, the energy and exergy efficiencies of the indirect coupling system are 42.70% and 41.14%, the internal rate of return (IRR) and discounted payback period (DPP) of the system are 25.68% and 8.56 years. The price fluctuation of fuels and products has a great influence on the economic performance of the indirect coupling system. The environmental impact analysis indicates that the indirect coupling system can inhibit the propagation of NO and reduce the environmental cost.

相关研究