• 首页
  • 期刊
  • 焦点
  • 会议
  • 学者
  • 登录

大纲

  • 摘要
  • 关键词

Figures(5)

标签(1)

Table 1

其他(2)

PDF
Document

结构与土木工程前沿(英文)

2020年  第14卷  第6期  页码 1285-1298
    • PDF
    • 收藏

    Multiscale computation on feedforward neural network and recurrent neural network

    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

    收稿日期:2020-11-20 录用日期 : 2020-12-28 发布日期:2020-12-28
    展示更多
    10.1007/s11709-020-0691-7
    引用这篇文章
    Bin LI, Xiaoying ZHUANG.Multiscale computation on feedforward neural network and recurrent neural network[J].Frontiers of Structural and Civil Engineering,2020,14(6):1285-1298.

    摘要

    Homogenization methods can be used to predict the effective macroscopic properties of materials that are heterogenous at micro- or fine-scale. Among existing methods for homogenization, computational homogenization is widely used in multiscale analyses of structures and materials. Conventional computational homogenization suffers from long computing times, which substantially limits its application in analyzing engineering problems. The neural networks can be used to construct fully decoupled approaches in nonlinear multiscale methods by mapping macroscopic loading and microscopic response. Computational homogenization methods for nonlinear material and implementation of offline multiscale computation are studied to generate data set. This article intends to model the multiscale constitution using feedforward neural network (FNN) and recurrent neural network (RNN), and appropriate set of loading paths are selected to effectively predict the materials behavior along unknown paths. Applications to two-dimensional multiscale analysis are tested and discussed in detail.

    关键词

    multiscale method ; constitutive model ; feedforward neural network ; recurrent neural network
    上一篇 本期文章
    本期文章 下一篇
    登录后,您可以进行评论。请先登录

    评论

    评论

    • 所有评论
     咋就跳到顶部了
    2019-04-23 11:24:14
    回复 (0)
    inspur  手机账号
    2019-05-10 11:30:17
    回复 (0)

    阅读量

    61

    下载量

    4

    相关研究

    当期
      当期
        Follow us
        版权所有©2015 《中国工程科学》杂志社
        京ICP备11030251号
        Follow us
        版权所有©2015 《中国工程科学》杂志社
        京ICP备11030251号