期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1400-z

Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes

1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

发布日期: 2021-02-11

下一篇 上一篇

摘要

Abstract • A way for overflow control based on on-site coagulation/flocculation was proposed. • Coagulant and flocculant dose were optimized based on pollutant removal performance. • Settling time of 5 min is enough in a proper transmission distance. • Fast removal of particulate pollutants could be achieved under varied flow. The pollution caused by wet weather overflow in urban drainage systems is a main factor causing blackening an odorization of urban rivers. The conventional overflow treatment based on coagulation/flocculation in terminal drainage systems requires relatively large space and long retention time demand that makes it not applicable in crowded urban drainage systems or under heavy rains. On-site coagulation/flocculation in terminal drainage pipes was proposed in this study which was aimed to transfer the coagulation/flocculation process to the inside of pipes at the terminal drainage system to save space and reduce the retention time of the coagulation/flocculation process. The optimized dose of chemicals was studied first which was 80 mg/L of coagulant and 0.8 mg/L of flocculant. Settling for only 5 min can remove most of the pollutants at 406.5 m of transmission distance. In addition, the relation of wet weather overflow rate and concentration of pollution load on the on-site coagulation/flocculation process was investigated, which indicated that high removal of pollutant was gained at a large range of flow velocity and pollutant concentration. Finally, the study confirmed electric neutralization, bridging, and net capture as the major mechanisms in this process, and further optimization was proposed. The proposed process can reduce much turbidity, chemical oxygen demand, and total phosphorous, but hardly remove soluble ammonia and organics. This work provides scientific guidance to address wet weather overflow in terminal drainage pipes.

相关研究