期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2016年 第2卷 第1期 doi: 10.1016/J.ENG.2016.01.024

行波堆:设计与开发

TerraPower LLC, Bellevue, WA 98005, USA

收稿日期: 2015-11-06 修回日期: 2016-02-22 录用日期: 2016-02-24 发布日期: 2016-03-31

下一篇 上一篇

摘要

行波堆为一次通过式燃料循环反应堆,其利用堆芯自增殖大大降低了对浓缩和后处理的需求。自增殖将次临界换料燃料转化为新的临界燃料,从而使增殖燃烧波得以扩散。该理念建立在增殖燃烧波和燃料的相对移动的基础上。因此,燃料或增殖燃烧波相对于固定的观察器而言是移动的。行波堆最实用的体现就是能够在将核反应保持在同一位置的同时移动燃料——有时行波堆也被称为“驻波堆”。行波堆能够使用换料铀燃料运行,换料铀燃料包括完全贫化铀、天然铀和低浓缩铀燃料( 即235U含量为5.5 %或更低的燃料),这些燃料通常在快谱中达不到临界状态。轻水反应堆卸出的乏燃料也可以作为行波堆的换料燃料。上述情况均无需后处理即可实现极高的燃料利用率和燃料废物量的显著降低。当换料燃料为贫化铀时,行波堆的最大优势得以实现,即在启动后,无需浓缩设施,就可维持最先启动的反应堆和一连串后续的反应堆的运行。自2006年起,泰拉能源公司(TerraPower) 与50 多个机构高度协作,开展了概念设计、工程设计和相关技术开发活动,力争到2026年实现将第一个机组投入使用。本文总结了行波堆技术,包括它的发展计划及其进展,分析了行波堆的社会和经济效益。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Asafu-Adjaya J, Blomqvist L, Brand S, Brook B, DeFries R, Ellis E, An ecomodernist manifesto [Internet]. 2015[cited 2015Oct28]. Available from: http://www.ecomodernism.org/.

[ 2 ] Hejzlar P, Petroski R, Cheatham J, Touran N, Cohen M, Truong B, TerraPower, LLC traveling wave reactor development program overview. Nucl Eng Technol 2013; 45(6): 731−44. 链接1

[ 3 ] Chen SK, Petroski R, Todreas NE. Numerical implementation of the Cheng and Todreas correlation for wire wrapped bundle friction factors-desirable improvements in the transition flow region. Nucl Eng Des 2013; 263: 406−10. 链接1

[ 4 ] Mikityuk K. Heat transfer to liquid metal: review of data and correlations for tube bundles. Nucl Eng Des 2009; 239(4): 680−7. 链接1

[ 5 ] Engel FC, Minushkin B, Atkins RJ, Markley RA. Characterization of heat transfer and temperature distributions in an electrically heated model of an LMFBR blanket assembly. Nucl Eng Des 1980; 62(1−3): 335−47. 链接1

[ 6 ] Miller SJ, Latta R. Fuel performance modeling of traveling wave reactor fuel elements [poster session]. In: Materials Modeling and Simulation for Nuclear Fuels 2013 Workshop; 2013Oct14−16; Chicago, IL, USA; 2013.

[ 7 ] Cohen M, Werner M, Johns C. Mechanical model of a TerraPower, traveling wave reactor fuel assembly duct. In: 22nd International Conference on Structural Mechanics in Reactor Technology; 2013Aug18−23; San Francisco, CA, USA. Red Hook: Curran Associates, Inc.; 2014.

[ 8 ] Bates E, Truong B, Huddar L. Phase II of the EBR-II SHRT-45R benchmark study−TerraPower’s SAS4A/SASSYS-1 results. In: Proceedings of 2016 Advances in Reactor Physics−Linking Research, Industry, and Education (PHYSOR 2016); 2016May1−5; Sun Valley, ID, USA; Forthcoming 2016.

[ 9 ] Pahl R, Lahm CE, Hayes SL. Performance of HT9 clad metallic fuel at high temperature. J Nucl Mater 1993; 204: 141−7. 链接1

[10] Yacout AM, Salvatores S, Orechwa Y. Degradation analysis estimates of the time-to-failure distribution of irradiated fuel elements. Nucl Tech 1996; 113(2): 177−89.

[11] Touran N, Cheatham J, Petroski R. Model biases in high-burnup fast reactor simulations [CD-ROM]. In: Proceedings of 2012 Advances in Reactor Physics−Linking Research, Industry, and Education (PHYSOR 2012); 2012Apr15−20; Knoxville, TN, USA. LaGrange Park: American Nuclear Society; 2012.

[12] Cheatham J, Truong B, Touran N, Latta R, Reed M, Petroski R. Fast reactor design using the advanced reactor modeling interface. In: Proceedings of 2013 21st International Conference on Nuclear Engineering: Volume 2; 2013Jul29−Aug2; Chengdu, China. New York: American Society of Mechanical Engineers; 2013. p. V002T05A072.

[13] Waldo JB, Padilla Jr A, Nguyen DH, Claybrook SW. Application of the GEM shutdown device to the FFTF reactor. Trans Am Nucl Soc 1986; 53: 312−3.

[14] Johnson BC. Preliminary results of the TerraPower-1 probabilistic risk assessment. In: Proceedings of the 11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability Conference 2012; 2012Jun25−29; Helsinki, Finland. Red Hook: Curran Associates, Inc.; 2012. p. 3543−9.

[15] Bickel P, Friedrich R. ExternE: externalities of energy: methodology 2005 update. Luxembourg: Office for Official Publications of the European Communities; 2005.

[16] Weaver KD, Gilleland J, Whitmer C, Zimmerman G. High burn-up fuels for fast reactors: Past experience and novel applications. In: Proceedings of 2009 International Congress on Advances in Nuclear Power Plants; 2009May10−14; Tokyo, Japan. Red Hook: Curran Associates, Inc.; 2010. p. 795−802.

[17] Hackett MJ, Povirk G, Vollmer J. Materials development for the traveling wave reactor [presentation]. In: TMS 2012: 141st Annual Meeting and Exhibition; 2012Mar11−15; Orlando, FL, USA; 2012.

[18] Hilton BA, Hejzlar P, McAlees DG, Weaver KD, Maloy SA, Saleh TA, Traveling wave reactor: material requirements and development program. In: Proceedings of New Materials for Innovative Development of Nuclear Power Engineering Conference; 2014Mar24−27; Dimitrovgrad, Russia; 2014.

[19] Charlton WS, LeBouf RF, Gariazzo C, Grant Ford D, Beard C, Landsberger S, Proliferation resistance assessment methodology for nuclear fuel cycles. Nucl Technol 2007; 157(2): 143−56.

[20] Kharecha PA, Hansen JE. Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environ Sci Technol 2013; 47(9): 4889−95. 链接1

相关研究