期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2016年 第2卷 第2期 doi: 10.1016/J.ENG.2016.02.005

深圳“12·20”渣土场灾难滑坡成灾机理与岩土工程风险控制研究

a. China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
b. Institute of Geo-Mechanics, Chinese Academy of Geological Sciences, China Geological Survey, Beijing 100081, China
c. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
d. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
e. Urban Planning, Land & Resources Commission of Shenzhen Municipality, Shenzhen, Guangdong 518034, China
f. Shenzhen Geotechnical Investigation & Surveying Institute Co., Ltd., Shenzhen, Guangdong 518026, China

收稿日期: 2016-04-17 修回日期: 2016-05-19 录用日期: 2016-05-26 发布日期: 2016-06-23

下一篇 上一篇

摘要

2015 年12 月 20 日,广东省深圳市光明新区建筑渣土场发生滑坡,造成77人遇难、33栋建筑物被毁。现场勘察、无人机3D摄影测量、多期遥感影像动态分析表明,该滑坡源区滑带倾角仅4°,滑程长达1100 m,最大堆积宽度为630 m,体积约为2.73 × 106 m3,是目前世界上最大的渣土场滑坡。自2014 年3 月开始建设渣土场以来,堆填体积逐级增加、坡型不断变化,滑坡边界条件和水文特性具有不确定性。本文提出了多级建模方法以研究不同堆填阶段下坡体结构的变化特征,采用非稳定流理论模拟了地下水渗流场的演化特征。分析表明,渣土场可以划分为具有低含水率的前缘边坡和具有高含水率( 含底部积水) 的后缘渣土堆填体两个亚区。这种特殊的二元结构带来了两种 效应:第一,地表水入渗,后缘渣土堆填的地表水入渗位置随填土的增高而逐渐抬升,导致了前缘坡体超孔隙水压力水头逐渐增大;第二,固结渗流,在后缘渣土堆填区上部的渣土堆载导致下部饱水渣土体产生超静孔压,形成底部饱水软弱滑带,并促使地下水逐渐向前缘坡体渗流。两种效应的叠加导致了坡体稳定性降低,引发了前缘的液化失稳,最终导致了整体滑动。通过静力触探、 大型三轴和环剪试验获得了滑坡的土动力学参数,对远程滑动的成灾过程的模拟表明,滑体运动 的最大速度约为29.8 m·s–1,最大堆积厚度约为23 m,滑坡主体滑动时间约为130 s,视摩擦角为6°。 最后,对比分析了全球近期发生的多起渣土场滑坡灾难,从技术上看,这些风险大多是可预见的, 但是,由于非技术原因往往未被预见到,因此,需要加强城镇化岩土工程的技术和非技术风险的管控。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

图24

图25

图26

参考文献

[ 1 ] Reddy KR, Basha BM. Slope stability of waste dumps and landfills: state-of-the-art and future challenges. In: Proceedings of Indian Geotechnical Conference; 2014 Dec 18–21; Kakinada, India; 2014. p. 2311–37.

[ 2 ] Merry SM, Kavazanjian Jr E, Fritz WU. Reconnaissance of the July 10, 2000, Payatas landfill failure. J Perform Constr Facil 2005;19(2):100–7. 链接1

[ 3 ] Jafari NH, Stark TD, Merry S. The July 10 2000 Payatas landfill slope failure. Int J Geoeng Case Hist 2013;2(3):208–28.

[ 4 ] Lavigne F, Wassmer P, Gomez C, Davies TA, Hadmoko DS, Yan T, et al. The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia. Geoenvironmental Disasters 2014;1(1):10. 链接1

[ 5 ] Koerner RM, Soong TY. Stability assessment of ten large landfill failures. In: Zornberg JG, Christpher BR, editors Advances in Transportation and Geoenvironmental Systems Using Geosynthetics: Proceedings of Sessions of Geo-Denver 2000; 2000 Aug 5–8; Denver, Colorado. Reston: American Society of Civil Engineers; 2000. p. 1–38.

[ 6 ] Koerner RM, Soong TY. Leachate in landfills: the stability issues. Geotext Geomembranes 2000;18(5):293–309. 链接1

[ 7 ] Stark TD, Edi HT, Evans WD, Sherry PE. Municipal solid waste slope failure. II: stability analyses. J Geotech Geoenviron Eng 2000;126(5):408–19. 链接1

[ 8 ] Schroeder PR, Dozier TS, Zappi PA, McEnroe BM, Sjostrom JW, Peyton RL. The hydrologic evaluation of landfill performance (HELP) model: engineering documentation for version 3. Washington DC: US Environmental Protection Agency Office of Research and Development; 1994.

[ 9 ] Reddy KR, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner J, Lagier T. Hydraulic conductivity of MSW in landfills. J Environ Eng 2009;135(8):677–83. 链接1

[10] Bauer J, Koelsch F, Borgatto AVA. Stability analysis according to different shear strength concepts exemplified by two case studies. In: Proceedings of APLAS Sapporo 2008−the 5th Asian-Pacific Landfill Symposium; 2008 Oct 22–24; Sapporo, Japan; 2008.

[11] Blight G. Slope failures in municipal solid waste dumps and landfills: a review. Waste Manag Res 2008;26(5):448–63. 链接1

[12] GEO-SLOPE International Ltd. Seepage modeling with SEEP/W 2007 version: an engineering methodology. 3rd ed. Calgary: GEO-SLOPE International Ltd; 2008.

[13] Chen YJ. Types and addition of pore pressure. Chin J Geotech Eng 2012;34(5):954–6. Chinese.

[14] Li GX. Static pore water pressure and excess pore water pressure—a discussion with Mr. Chen Yujiong. Chin J Geotech Eng 2012;34(5):957–60. Chinese.

[15] Hungr O, McDougall S. Two numerical models for landslide dynamic analysis. Comput Geosci 2009;35(5):978–92. 链接1

[16] Sassa K, He B, Dang K, Nagai O, Takara K. Plenary: progress in landslide dynamics. In: Sassa K, Canuti P,Yin YP, editors Landslide science for a safer geoenvironment. Switzerland: Springer International Publishing; 2014. p. 37–67.

[17] Yin YP, Cheng YL, Liang JT, Wang WP. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake. Landslides 2016;13(1):9–23. 链接1

[18] Sassa K, Fukuoka H, Wang GH, Ishikawa N. Undrained dynamic loading ring-shear apparatus and its application to landslide dynamics. Landslides 2004;1(1):7–19. 链接1

[19] Sassa K, He B, Miyagi T, Strasser M, Konagai K, Ostric M, et al. A hypothesis of the Senoumi submarine megaslide in Suruga Bay in Japan—based on the undrained dynamic-loading ring shear tests and computer simulation. Landslides 2012;9(4):439–55. 链接1

[20] Skempton AW. Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique 1985;35(1):3–18.

[21] Kuenza K, Towhata I, Orense RP, Wassan TH. Undrained torsional shear tests on gravelly soils. Landslides 2004;1(3):185–94. 链接1

[22] Ishihara K. Liquefaction and flow failure during earthquake. Géotechnique 1993;43(3):351–451.

[23] Sladen JA, D’Hollander RD, Krahn J. The liquefaction of sands, a collapse surface approach. Can Geotech J 1985;22(4):564–78. 链接1

[24] Vaid YP, Chung EKF, Kuerbis RH. Stress path and steady state. Can Geotech J 1990;27(1):1–7. 链接1

[25] Castro G, Poulos SJ. Factors affecting liquefaction and cyclic mobility. J Geotech Geoenviron 1977;103(6):501–16.

[26] Poulos SJ. The steady state of deformation. J Geotech Geoenviron 1981;107(5): 553–62.

[27] Baynes FJ. Sources of geotechnical risk. Q J Eng Geol Hydroge 2010;43(3): 321–31. 链接1

[28] McMahon BK. Geotechnical design in the face of uncertainty: E.H. Davis memorial lecture. Sydney: Australian Geomechanics Society; 1985.

[29] Clayton CRI. Managing geotechnical risk: improving productivity in UK building and construction. London: Thomas Telford Ltd.; 2001.

[30] Kocasoy G, Curi K. The Ümraniye-Hekimbasi open dump accident. Waste Manag Res 1995;13(4):305–14.

[31] Kölsch F, Ziehmann G. Landfill stability—risks and challenges. Waste Management World2004 May−Jun:55–60.

[32] Blight G. A flow failure in a municipal solid waste landfill−the failure at Bulbul, South Africa. In: Jardine RJ, Potts DM, Higgins KG, editors Proceedings of Advances in Geotechnical Engineering−The Skempton Conference. London: Thomas Telford Ltd.; 2004. p. 777–88.

[33] Hendron DM, Fernandez G, Prommer PJ, Giroud JP, Orozco LF. Investigation of the cause of the 27 September 1997 slope failure at the Doña Juana landfill. In: Proceedings of Sardinia 1999, the 7th International Waste Management and Landfill Symposium; 1999 Oct 4–8; Cagliari, Italy; 1999. p. 545–54.

[34] Eid HT, Stark TD, Evans WD, Sherry PE. Municipal solid waste slope failure. I: waste and foundation soil properties. J Geotech Geoenviron Eng 2000;126(5):397–407. 链接1

[35] Huvaj-Sarihan N, Stark TD. Back-analyses of landfill slope failures. In: Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering; 2008 Aug 11–16; Arlington, VA, USA; 2008. Paper No. 2.34.

相关研究