期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2016年 第2卷 第4期 doi: 10.1016/J.ENG.2016.04.013

新型水循环之海水冲厕的可持续应用

a Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
b Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
c Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong, China
d School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
e Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, the Netherlands

录用日期: 2016-12-23 发布日期: 2016-12-28

下一篇 上一篇

摘要

水安全日益严重地威胁着全人类的健康和福祉。因此,寻找可持续替代的水资源已成为一个亟待解决的问题。尽管海水淡化和污水回用在一定程度上可以缓解城市的用水紧张,但是这两项技术的高能耗和高费用阻碍了它们的广泛应用。其实,城市用水中20%~30% 是用于冲洗厕所,经过简单处理后的海水完全可以达到冲厕用水的水质要求。当然海水冲厕和再生水冲厕一样需要配备单独的管道系统。本文通过生命周期评估和敏感性分析方法,在与常规淡水系统进行比较的基础上,系统地研究了海水冲厕、海水淡化以及污水回用这三种替代水资源的方法,在城市水系统中的相对节约淡水的潜力、对环境的影响以及广泛应用的前景。结果表明,海水冲厕具有环境可持续性,其应用主要取决于城市的有效人口密度和距海岸的距离。在有效人口密度超过3000 人·km–2 及距海岸30 km 以内的沿海城市,海水冲厕所带来的总环境影响明显低于其他两个替代水资源。如进一步结合应用适合含盐污水处理的硫酸盐还原、自养反硝化和综合硝化(sulfate reduction, autotrophicdenitrification, and nitrification integrated, SANI) 处理技术,海水冲厕的潜在应用范围可以扩大到距海岸60 km 的沿海城市。对于符合这些要求的沿海城市,建议将海水冲厕纳入城市水系统,从而促进城市水循环的可持续发展。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Postel SL. Entering an era of water scarcity: the challenges ahead. Ecol Appl 2000;10(4): 941–8 链接1

[ 2 ] Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Global threats to human water security and river biodiversity. Nature 2010;467(7315):555–61 链接1

[ 3 ] Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One 2012;7(2):e32688 链接1

[ 4 ] Grant SB, Saphores JD, Feldman DL, Hamilton AJ, Fletcher TD, Cook PL, Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 2012;337(6095):681–6 链接1

[ 5 ] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature 2008;452(7185):301–10 链接1

[ 6 ] Tal A. Seeking sustainability: Israel’s evolving water management strategy. Science 2006;313(5790):1081–4 链接1

[ 7 ] Hinrichsen D. Coastal waters of the world: trends, threats, and strategie. Washington, DC: Island Press; 1998.

[ 8 ] Chen G, Chui HK, Wong CL, Tang TW, Lu H, Jiang F, An innovative triple water supply system and a novel SANI® process to alleviate water shortage and pollution problem for water-scarce coastal areas in China. J Water Sustain 2012;2(2):121–9.

[ 9 ] Leung RW, Li DC, Yu WK, Chui HK, Lee TO, van Loosdrecht MC, Integration of seawater and grey water reuse to maximize alternative water resource for coastal areas: the case of the Hong Kong International Airport. Water Sci Technol 2012;65(3):410–7 链接1

[10] Wang J, Shi M, Lu H, Wu D, Shao MF, Zhang T, Microbial community of sulfate-reducing up-flow sludge bed in the SANI® process for saline sewage treatment. Appl Microbiol Biotechnol 2011;90(6):2015–25 链接1

[11] Lu H, Ekama GA, Wu D, Feng J, van Loosdrecht MC, Chen GH. SANI® process realizes sustainable saline sewage treatment: steady state model-based evaluation of the pilot-scale trial of the process. Water Res 2012;46(2):475–90 链接1

[12] Lu H, Wu D, Jiang F, Ekama GA, van Loosdrecht MC, Chen GH. The demonstration of a novel sulfur cycle-based wastewater treatment process: sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) biological nitrogen removal process. Biotechnol Bioeng 2012;109(11):2778–89 链接1

[13] Wang J, Lu H, Chen GH, Lau GN, Tsang WL, van Loosdrecht MC. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Res 2009;43(9):2363–72 链接1

[14] Lu H, Wang J, Li S, Chen GH, van Loosdrecht MC, Ekama GA. Steady-state model-based evaluation of sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) process. Water Res 2009;43(14):3613–21 链接1

[15] Lu H, Wu D, Tang DT, Chen GH, van Loosdrecht MC, Ekama G. Pilot scale evaluation of SANI process for sludge minimization and greenhouse gas reduction in saline sewage treatment. Water Sci Technol 2011;63(10):2149–54 链接1

[16] Wu D, Ekama GA, Chui H-K, Wang B, Cui Y-X, Hao T-W, Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI®) process in saline sewage treatment. Water Res 2016;100:496–507 链接1

[17] Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Recent developments in Life Cycle Assessment. J Environ Manage 2009;91(1):1–21 链接1

[18] International Organization for Standardization.ISO 14040:2006 Environmental management─life cycle assessment─principles and framework. 2nd ed. Geneva: International Standards Organisation; 2006.

[19] Chanan A, Woods P. Introducing total water cycle management in Sydney: a Kogarah Council initiative. Desalination 2006;187(1–3):11–6 链接1

[20] Renzoni R, Germain A. Life cycle assessment of water: from the pumping station to the wastewater treatment plant. Int J Life Cycle Assess 2007;12(2): 118–26 链接1

[21] Amores MJ, Meneses M, Pasqualino J, Antón A, Castells F. Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. J Cleaner Prod 2013;43:84–92 链接1

[22] Muñoz I, Fernández-Alba AR. Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources. Water Res 2008;42(3):801–11 链接1

[23] Li Y, Xiong W, Zhang W, Wang C, Wang P. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China. Water Res 2016;89:9–19 链接1

[24] Barjoveanu G, Comandaru IM, Rodriguez-Garcia G, Hospido A, Teodosiu C. Evaluation of water services system through LCA. A case study for Iasi City, Romania. Int J Life Cycle Assess 2014;19(2):449–62 链接1

[25] Raluy RG, Serra L, Uche J, Valero A. Life cycle assessment of water production technologies─part 2: reverse osmosis desalination versus the Ebro River water transfer. Int J Life Cycle Assess 2005;10(5):346–54 链接1

[26] Hospido A, Moreira T, Martín M, Rigola M, Feijoo G. Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes. Int J Life Cycle Assess 2005;10(5):336–45 链接1

[27] Lloyd SM, Ries R. Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Ind Ecol 2007;11(1):161–79 链接1

[28] Loubet P, Roux P, Loiseau E, Bellon-Maurel V. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature. Water Res 2014;67:187–202 链接1

[29] Friedrich E, Pillay S, Buckley CA. Environmental life cycle assessments for water treatment processes─a South African case study of an urban water cycle. Water SA 2009;35(1):73–84.

[30] Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci USA 2012;109(40):16083–8 链接1

[31] Lemos D, Dias AC, Gabarrell X, Arroja L. Environmental assessment of an urban water system. J Cleaner Prod 2013;54:157–65 链接1

[32] Godskesen B, Hauschild M, Rygaard M, Zambrano K, Albrechtsen HJ. Life-cycle and freshwater withdrawal impact assessment of water supply technologies. Water Res 2013;47(7):2363–74 链接1

[33] Schoen ME, Xue X, Hawkins TR, Ashbolt NJ. Comparative human health risk analysis of coastal community water and waste service options. Environ Sci Technol 2014;48(16):9728–36 链接1

相关研究