期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第1期 doi: 10.1016/J.ENG.2017.01.010

软骨组织工程研究进展——我们的经验与未来展望

a Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
b National Tissue Engineering Research Center of China, Shanghai 200241, China
c Research Institute of Plastic Surgery, Plastic Surgery Hospital, Weifang Medical University, Weifang, Shandong 261041, China
d Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing 100144, China

收稿日期: 2016-10-31 修回日期: 2017-01-12 录用日期: 2017-01-13 发布日期: 2017-02-21

下一篇 上一篇

摘要

软骨缺损难以自行修复,组织工程是实现软骨再生的理想途径。目前,组织工程软骨主要有两类用途:一是用于骨科或关节外科,修复关节表面或半月板部位的软骨缺损,实现关节运动功能的重建;二是用于整形或头颈外科,修复耳廓、气管、睑板、鼻、喉等具有特殊形态及功能的软骨缺损。不同应用目标的组织工程软骨,其构建方法和所面临的挑战,以及临床转化进程均会有很大差别。本文旨在针对上述两大应用目标,结合我们团队在研究过程中所建立的观点及积累的经验,对组织工程软骨目前的主要研究进展和所面临的挑战,以及未来的发展方向做一简要总结。

图片

图1

图2

图3

参考文献

[ 1 ] Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 2016;7(1):56 链接1

[ 2 ] Reinholz GG, Lu L, Saris DBF, Yaszemski MJO, O’Driscoll SW. Animal models for cartilage reconstruction. Biomaterials 2004;25(9):1511–21 链接1

[ 3 ] Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001;391(391 Suppl):S362–9 链接1

[ 4 ] Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003;85(Suppl 2):25–32 链接1

[ 5 ] Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantatio n. N Engl J Med 1994;331(14):889–95 链接1

[ 6 ] Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 2011;17(4):281–99 链接1

[ 7 ] Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, et alRestoration of articular cartilage. J Bone Joint Surg Am 2014;96(4):336–44 链接1

[ 8 ] Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012;338(6109):917–21 链接1

[ 9 ] Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–6 链接1

[10] Chaganti RK, Lane NE. Risk factors for incident osteoarthritis of the hip and knee. Curr Rev Musculoskelet Med 2011;4(3):99–104 链接1

[11] Hunziker EB, Lippuner K, Keel MJ, Shintani N. An educational review of cartilage repair: precepts & practices—myths & misconceptions—progress & prospects. Osteoarthritis Cartilage 2015;23(3):334–50 链接1

[12] Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, et alRepairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 2002;8(4):709–21.. PMID:12202009 链接1

[13] Dani?ovi? ?, Bohá? M, Zamborsky R, Oravcová L, Provazníková Z, Cs?b?nyeiová M, et alComparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. Gen Physiol Biophys 2016;35(2):207–14 链接1

[14] Caminal M, Peris D, Fonseca C, Barrachina J, Codina D, Rabanal RM, et alCartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology 2016;68(4):907–19 链接1

[15] Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop 2016;7(3):149–55 链接1

[16] Zhao G, Yin S, Liu G, Cen L, Sun J, Zhou H, et alIn vitro engineering of fibrocartilage using CDMP1 induced dermal fibroblasts and polyglycolide. Biomaterials 2009;30(19):3241–50 链接1

[17] El Sayed K, Haisch A, John T, Marzahn U, Lohan A, Müller RD, et alHeterotopic autologous chondrocyte transplantation—a realistic approach to support articular cartilage repair? Tissue Eng Part B Rev 2010;16(6):603–16 链接1

[18] Lohan A, Marzahn U, El Sayed K, Haisch A, Müller RD, Kohl B, et alOsteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat 2014;196(5):317–26 链接1

[19] Van Osch GJ, Mandl EW, Jahr H, Koevoet W, Nolst-Trenité G, Verhaar JA. Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering. Biorheology 2004;41(3–4):411–21 链接1

[20] El Sayed K, Marzahn U, John T, Hoyer M, Zreiqat H, Witthuhn A, et alPGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med 2013;7(1):61–72 链接1

[21] Dehne T, Karlsson C, Ringe J, Sittinger M, Lindahl A. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Res Ther 2009;11(5):R133 链接1

[22] Schrobback K, Klein TJ, Crawford R, Upton Z, Malda J, Leavesley DI. Effects of oxygen and culture system on in vitro propagation and redifferentiation of osteoarthritic human articular chondrocytes. Cell Tissue Res 2012;347(3):649–63 链接1

[23] Oda T, Sakai T, Hiraiwa H, Hamada T, Ono Y, Nakashima M, et alOsteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering. Biochem Biophys Res Commun 2016;479(3):469–75 链接1

[24] Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 1996;17(9):879–88 链接1

[25] ?etinkaya G, Kahraman AS, Gümü?derelio?lu M, Arat S, Onur MA. Derivation, characterization and expansion of fetal chondrocytes on different microcarriers. Cytotechnology 2011;63(6):633–43 链接1

[26] Grogan SP, Barbero A, Diaz-Romero J, Cleton-Jansen AM, Soeder S, Whiteside R, et alIdentification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum 2007;56(2):586–95 链接1

[27] Appel B, Baumer J, Eyrich D, Sarhan H, Toso S, Englert C, et al. Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment. Osteoarthritis Cartilage 2009;17(11):1503–12 链接1

[28] Egli RJ, Bastian JD, Ganz R, Hofstetter W, Leunig Met alHypoxic expansion promotes the chondrogenic potential of articular chondrocytes. J Orthop Res 2008;26(7):977–85 链接1

[29] Huang BJ, Hu JC, Athanasiou KA. Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Acta Biomater 2016;43:150–9 链接1

[30] Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng 2006;12(11):3209–21 链接1

[31] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et alMultilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–7 链接1

[32] Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007;327(3):449–62 链接1

[33] Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 2007;28(5):219–26 链接1

[34] Du W, Reppel L, Leger L, Schenowitz C, Huselstein C, Bensoussan D, et alMesenchymal stem cells derived from human bone marrow and adipose tissue maintain their immunosuppressive properties after chondrogenic differentiation: role of HLA-G. Stem Cells Dev 2016;25(19):1454–69 链接1

[35] Bomer N, den Hollander W, Suchiman H, Houtman E, Slieker RC, Heijmans BT, et alNeo-cartilage engineered from primary chondrocytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. Osteoarthritis Cartilage 2016;24(8):1423–30 链接1

[36] Cushing MC, Anseth KS. Hydrogel cell cultures. Science 2007;316(5828):1133–4 链接1

[37] Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30(1):215–24 链接1

[38] Kesti M, Müller M, Becher J, Schnabelrauch M, D’Este M, Eglin D, et alA versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 2015;11:162–72 链接1

[39] Markstedt K, Mantas A, Tournier I, Martínez ávila H, H?gg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015;16(5):1489–96 链接1

[40] Abbadessa A, Blokzijl MM, Mouser VH, Marica P, Malda J, Hennink WE, et alA thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydr Polym 2016;149:163–74 链接1

[41] Lee H, Park TG. Photo-crosslinkable, biomimetic, and thermo-sensitive Pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J Biomed Mater Res A 2009;88A(3):797–806 链接1

[42] Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJ. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 2009;30(3):344–53 链接1

[43] Mellati A, Fan CM, Tamayol A, Annabi N, Dai S, Bi J, et alMicroengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol Bioeng 2017;114(1):217–31 链接1

[44] Liu H, Liu J, Qi C, Fang Y, Zhang L, Zhuo R, et alThermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 2016;35:228–37 链接1

[45] Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A 2010;16(2):465–77 链接1

[46] Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5(6):582–612 链接1

[47] Florine EM, Miller RE, Liebesny PH, Mroszczyk KA, Lee RT, Patwari P, et alDelivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels. Tissue Eng Part A 2015;21(3–4):637–46 链接1

[48] Roach BL, Kelmendi-Doko A, Balutis EC, Marra KG, Ateshian GA, Hung CT. Dexamethasone release from within engineered cartilage as a chondroprotective strategy against interleukin-1α. Tissue Eng Part A 2016;22(7–8):621–32.. PMID:26956216 链接1

[49] Florine EM, Miller RE, Porter RM, Evans CH, Kurz B, Grodzinsky AJ. Effects of dexamethasone on mesenchymal stromal cell chondrogenesis and aggrecanase activity: comparison of agarose and self-assembling peptide scaffolds. Cartilage 2013;4(1):63–74 链接1

[50] Chu J, Zeng S, Gao L, Groth T, Li Z, Kong J, et alPoly(L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility. Int J Artif Organs 2016;39(8):435–43 链接1

[51] Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, et al25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 2014;26(1):85–124 链接1

[52] Liu W, Cao Y. Application of scaffold materials in tissue reconstruction in immunocompetent mammals: our experience and future requirements. Biomaterials 2007;28(34):5078–86 链接1

[53] Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M. Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 2014;1:10 链接1

[54] Huang H, Zhang X, Hu X, Shao Z, Zhu J, Dai L, et alA functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials 2014;35(36):9608–19 链接1

[55] Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, et alRegeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 2013;34(28):6706–16 链接1

[56] Ahern BJ, Parvizi J, Boston R, Schaer TP. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 2009;17(6):705–13 链接1

[57] Malfait AM, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther 2015;17:225 链接1

[58] Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage 2013;21(12):1824–33 链接1

[59] Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016;98:1–22 链接1

[60] Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, et alBioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials 2010;31(34):8946–52 链接1

[61] Dickhut A, Gottwald E, Steck E, Heisel C, Richter W. Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo. Front Biosci 2008;13:4517–28 链接1

[62] De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 2004;50(1):142–50 链接1

[63] Liu K, Zhou G, Liu W, Zhang W, Cui L, Liu X, et alThe dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials 2008;29(14):2183–92 链接1

[64] Kamil SH, Vacanti MP, Vacanti CA, Eavey RD. Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 2004;114(12):2187–90 链接1

[65] Melgarejo-Ramírez Y, Sánchez-Sánchez R, García-López J, Brena-Molina AM, Gutiérrez-Gómez C, Ibarra C, et alCharacterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies. Cell Tissue Bank 2016;17(3):481–9 链接1

[66] Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, et alRegeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials 2014;35(18):4878–87 链接1

[67] Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 2004;10(5–6):762–70 链接1

[68] Dickhut A, Pelttari K, Janicki P, Wagner W, Eckstein V, Egermann M, et alCalcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 2009;219(1):219–26 链接1

[69] Ko CY, Ku KL, Yang SR, Lin TY, Peng S, Peng YS, et alIn vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG -PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med 2016;10(10):E485–96 链接1

[70] Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, et alIn vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010;31(36):9406–14 链接1

[71] Kang N, Liu X, Yan L, Wang Q, Cao Y, Xiao R. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro. Cells Tissues Organs 2013;198(5):357–66 链接1

[72] Wu L, Leijten JC, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 2011;17(9–10):1425–36 链接1

[73] Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 2012;18(15–16):1542–51 链接1

[74] de Windt TS, Saris DB, Slaper-Cortenbach IC, van Rijen MH, Gawlitta D, Creemers LB, et alDirect cell-cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng Part A 2015;21(19–20):2536–47 链接1

[75] Yanaga H, Imai K, Fujimoto T, Yanaga K. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg 2009;124(3):817–25 链接1

[76] Yanaga H, Imai K, Tanaka Y, Yanaga K. Two-stage transplantation of cell-engineered autologous auricular chondrocytes to regenerate chondrofat composite tissue: clinical application in regenerative surgery. Plast Reconstr Surg 2013;132(6):1467–77 链接1

[77] Weidenbecher M, Tucker HM, Awadallah A, Dennis JE. Fabrication of a neotrachea using engineered cartilage. Laryngoscope 2008;118(4):593–8 链接1

[78] Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE. Tissue-engineered trachea for airway reconstruction. Laryngoscope 2009;119(11):2118–23 链接1

[79] Bichara DA, Pomerantseva I, Zhao X, Zhou L, Kulig KM, Tseng A, et alSuccessful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Tissue Eng Part A 2014;20(1–2):303–12 链接1

[80] Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, et alEar-shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A 2016;22(3–4):197–207 链接1

[81] Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, et alDecellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 2012;18(21–22):2195–209 链接1

[82] Luo X, Zhou G, Liu W, Zhang WJ, Cen L, Cui L, et alIn vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater 2009;4(2):025006 链接1

[83] Liu Y, Li D, Yin Z, Luo X, Liu W, Zhang W, et alProlonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model. Biomed Mater 2016;12(1):015006 链接1

[84] Zhou L, Pomerantseva I, Bassett EK, Bowley CM, Zhao X, Bichara DA, et alEngineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 2011;17(11–12):1573–81 链接1

[85] Centola M, Abbruzzese F, Scotti C, Barbero A, Vadalà G, Denaro V, et al. Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Eng Part A 2013;19(17–18):1960–71 链接1

[86] Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016;34(3):312–9 链接1

[87] Luo X, Liu Y, Zhang Z, Tao R, Liu Y, He A, et alLong-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials 2013;34(13):3336–44 链接1

[88] Haisch A. Ear reconstruction through tissue engineering. Adv Otorhinolaryngol 2010;68:108–19 链接1

[89] Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997;100(2):297–302; discussion 303–4 链接1

[90] Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et alClinical transplantation of a tissue-engineered airway. Lancet 2008;372(9655):2023–30 链接1

[91] Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, et alThe first tissue-engineered airway transplantation: 5-year follow-up results. Lancet 2014;383(9913):238–44 链接1

[92] Jungebluth P, Alici E, Baiguera S, Blomberg P, Bozóky B, Crowley C, et alTracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 2011;378(9808):1997–2004. Erratum in: Lancet 2016;387(10022):944 ; Lancet 2016;387(10025):1276 链接1

[93] Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et alStem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012;380(9846):994–1000 链接1

[94] Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, et alEngineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 2014;384(9940):337–46 链接1

相关研究