期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第2期 doi: 10.1016/J.ENG.2017.02.001

单乙醇胺碳捕集工艺大规模工业化应用:提高非平衡级速率模型的预测精度

Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK

收稿日期: 2018-11-13 修回日期: 2017-01-17 录用日期: 2017-01-30 发布日期: 2017-03-17

下一篇 上一篇

摘要

对于减少化石能源发电厂和其他能源密集型过程的人为二氧化碳(CO2) 的排放,碳捕集和储存(CCS)技术将发挥至关重要的作用。然而, 由于装备CO2捕集装置而导致的成本增加是其大规模工业化应用的主要障碍。为减少碳捕集装置的一次性投资费用和后续操作费用,大量的研究通过流程建模、仿真和优化来实现该过程的优化设计和优化操作。为此,准确的模型是必不可少的基础。本文论述了关于通过升级参数和多级模型验证来开发一个更精确的基于乙醇胺碳捕集过程的非平衡级速率模型。本文首先分析了该过程速率模型的建模框架。采用Aspen Plus® 软件开发此过程的稳态模型,并且在三个模拟阶段对较宽范围的压力,温度和CO2 载荷进行了模型验证,包括热力学建模、物性计算和中试规模工艺模拟。采用在Aspen Plus® 中编写Fortran 子程序升级了液相密度和气液相接触面积计算的关联参数。模型验证结果表明,本文中采用的新的关联参数组合的热力学模型比其他三个经典模型具有更高的精度,而且试验规模的流程模拟结果和实验数据吻合很好。随后本文采用这一模型对一个250 MW 的联合循环燃气发电厂的碳捕集工艺过程设计进行了案例研究,并和另一文献进行了对比,本文的设计降低了吸收塔和解析塔的填料高度并减少了CO2特征热负荷。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al.Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Meyer LA, editors. Geneva: Intergovernmental Panel on Climate Change; 2015 [cited 2016 Jun 6]. Available from: http://www.ipcc.ch/report/ar5/syr.

[ 2 ] Intergovernmental Panel on Climate Change. Climate change 2014: Mitigation of climate change. Working Group III contribution to the IPCC Fifth Assessment Report. Cambridge: Cambridge University Press; 2015.

[ 3 ] International Energy Agency. Energy technology perspectives 2010: Scenarios and strategies to 2050. Paris: OECD Publishing; 2010.

[ 4 ] Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann JM, Bouallou C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 2010;30(1):53–62 链接1

[ 5 ] Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem Eng Res Des 2011;89(9):1609–24 链接1

[ 6 ] Rochelle GT. Amine scrubbing for CO2 capture. Science 2009;325(5948):1652–4 链接1

[ 7 ] Kenig EY, Schneider R, Górak A. Reactive absorption: Optimal process design via optimal modeling. Chem Eng Sci 2001;56(2):343–50 链接1

[ 8 ] Harris F, Kurnia KA, Mutalib MIA, Thanapalan M. Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption. J Chem Eng Data 2009;54(1):144–7 链接1

[ 9 ] Tong D, Trusler JPM, Maitland GC, Gibbins J, Fennell PS. Solubility of carbon dioxide in aqueous solution of monoethanolamine or 2-amino-2-methyl-1-propanol: Experimental measurements and modeling. Int J Greenh Gas Con 2012;6:37–47 链接1

[10] Hilliard MD. A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas [dissertation]. Austin: University of Texas at Austin; 2008.

[11] Aronu UE, Gondal S, Hessen ET, Haug-Warberg T, Hartono A, Hoff KA, et al.Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120 °C and model representation using the extended UNIQUAC framework. Chem Eng Sci 2011;66(24):6393–406 链接1

[12] Cheng S, Meisen A, Chakma A. Predict amine solution properties accurately. Hydrocarbon Process 1996;75(2):81–4.

[13] Hartono A, Mba EO, Svendsen HF. Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA). J Chem Eng Data 2014;59(6):1808–16 链接1

[14] Han J, Jin J, Eimer DA, Melaaen MC. Density of water (1) + monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and surface tension of water (1) + monoethanolamine (2) from (303.15 to 333.15) K. J Chem Eng Data 2012;57(4):1095–103 链接1

[15] Dugas RE. Pilot plant study of carbon dioxide capture by aqueous monoethanolamine [dissertation]. Austin: University of Texas at Austin; 2006.

[16] Notz R, Mangalapally HP, Hasse H. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. Int J Greenh Gas Con 2012;6:84–112 链接1

[17] Song JH, Yoon JH, Lee H, Lee KH. Solubility of carbon dioxide in monoethanolamine+ ethylene glycol+ water and monoethanolamine+ poly(ethylene glycol) + water. J Chem Eng Data 1996;41(3):497–9 链接1

[18] Chen CC, Evans LB. A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J 1986;32(3):444–54 链接1

[19] Austgen DM, Rochelle GT, Peng X, Chen CC. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Ind Eng Chem Res 1989;28(7):1060–73 链接1

[20] Zhang Y, Que H, Chen CC. Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model. Fluid Phase Equilibr 2011;311:67–75 链接1

[21] Agbonghae EO, Hughes KJ, Ingham DB, Ma L, Pourkashanian M. Optimal process design of commercial-scale amine-based CO2 capture plants. Ind Eng Chem Res 2014;53(38):14815–29 链接1

[22] Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 2001;40(4):1244–60 链接1

[23] Gross J, Sadowski G. Application of the perturbed-chain SAFT equation of state to associating systems. Ind Eng Chem Res 2002;41(22):5510–5 链接1

[24] Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. Int J Greenh Gas Con 2007;1(1):37–46 链接1

[25] Kvamsdal HM, Haugen G, Svendsen HF. Flue-gas cooling in post-combustion capture plants. Chem Eng Res Des 2011;89(9):1544–52 链接1

[26] Lawal A, Wang M, Stephenson P, Obi O. Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modeling and simulation. Fuel 2012;101:115–28 链接1

[27] Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT. Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind Eng Chem Res 2009;48(20):9233–46 链接1

[28] Lucquiaud M, Gibbins J. Retrofitting CO2 capture ready fossil plants with post-combustion capture. Part 1: Requirements for supercritical pulverized coal plants using solvent-based flue gas scrubbing. P I Mech Eng A– J Pow 2009;223(3):213–26.

[29] Luo X, Wang M, Chen J. Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression. Fuel 2015;151:110–7 链接1

[30] Liu X, Chen J, Luo X, Wang M, Meng H. Study on heat integration of supercritical coal-fired power plant with post-combustion CO2 capture process through process simulation. Fuel 2015;158:625–33 链接1

[31] Sip?cz N, Tobiesen FA. Natural gas combined cycle power plants with CO2 capture—Opportunities to reduce cost. Int J Greenh Gas Con 2012;7:98–106 链接1

[32] Mores PL, Godoy E, Mussati SF, Scenna NJ. A NGCC power plant with a CO2 post-combustion capture option. Optimal economics for different generation/capture goals. Chem Eng Res Des 2014;92(7):1329–53 链接1

[33] Luo X, Wang M. Optimal operation of MEA-based post-combustion carbon capture for natural gas combined cycle power plants under different market conditions. Int J Greenh Gas Con 2016;48(Part 2):312–20 链接1

[34] Mac Dowell N, Shah N. Identification of the cost-optimal degree of CO2 capture: An optimisation study using dynamic process models. Int J Greenh Gas Con 2013;13:44–58 链接1

[35] Kvamsdal HM, Hetland J, Haugen G, Svendsen HF, Major F, K?rstad V, et al.Maintaining a neutral water balance in a 450 MWe NGCC-CCS power system with post-combustion carbon dioxide capture aimed at offshore operation. Int J Greenh Gas Con 2010;4(4):613–22 链接1

[36] Biliyok C, Canepa R, Wang M, Yeung H. Techno-economic analysis of a natural gas combined cycle power plant with CO2 capture. In: Kraslawski A, Turunen I, editors Computer aided chemical engineering: The 23rd European Symposium on Computer Aided Process Engineering. Oxford: Elsevier; 2013. p. 187–92 链接1

[37] Abu-Zahra MRM, Niederer JPM, Feron PHM, Versteeg GF. CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine. Int J Greenh Gas Con 2007;1(2):135–42 链接1

[38] Kvamsdal HM, Chikukwa A, Hillestad M, Zakeri A, Einbu A. A comparison of different parameter correlation models and the validation of an MEA-based absorber model. Energ Procedia 2011;4:1526–33 链接1

[39] Razi N, Bolland O, Svendsen H. Review of design correlations for CO2 absorption into MEA using structured packings. Int J Greenh Gas Con 2012;9:193–219 链接1

[40] Zhang Y, Chen CC. Modeling CO2 absorption and desorption by aqueous monoethanolamine solution with aspen rate-based model. Energ Procedia 2013;37:1584–96 链接1

[41] Lawal A, Wang M, Stephenson P, Yeung H. Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants. Fuel 2009;88(12):2455–62 链接1

[42] Zhang Y, Chen CC. Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind Eng Chem Res 2011;50(1):163–75 链接1

[43] Luo X, Wang M, Oko E, Okezue C. Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network. Appl Energ 2014;132:610–20 链接1

[44] Aspen Technology, Inc. Aspen physical property system: Physical property methods. Burlington: Aspen Technology, Inc.; 2013.

[45] Fakouri Baygi S, Pahlavanzadeh H. Application of the perturbed chain-SAFT equation of state for modeling CO2 solubility in aqueous monoethanolamine solutions. Chem Eng Res Des 2015;93:789–99 链接1

[46] Yan Y, Chen CC. Thermodynamic modeling of CO2 solubility in aqueous solutions of NaCl and Na2SO4. J Supercrit Fluid 2010;55(2):623–34 链接1

[47] Liu Y, Zhang L, Watanasiri S. Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model. Ind Eng Chem Res 1999;38(5):2080–90 链接1

[48] Edwards TJ, Maurer G, Newman J, Prausnitz JM. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE J 1978;24(6):966–76 链接1

[49] Bates RG, Pinching GD. Acidic dissociation constant and related thermodynamic quantities for monoethanolammonium ion in water from 0 °C to 50 °C. J Res Nat Bur Stand 1951;46(5):349–52 链接1

[50] Ikada E, Hida Y, Okamoto H, Hagino J, Koizumi N. Dielectric properties of ethanolamines. Bull Inst Chem Res Kyoto Univ 1968;46(5):239–47.

[51] Chen CC, Britt HI, Boston JF, Evans LB. Extension and application of the pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE J 1979;25(5):820–31 链接1

[52] Weiland RH, Dingman JC, Cronin DB. Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide. J Chem Eng Data 1997;42(5):1004–6 链接1

[53] Weiland RH, Dingman JC, Cronin DB, Browning GJ. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. J Chem Eng Data 1998;43(3):378–82 链接1

[54] Weiland RH. Carbon dioxide removal by mixtures of amines: Final report. Des Plaines: Gas Research Institute; 1996.

[55] Ying J, Eimer DA. Measurements and correlations of diffusivities of nitrous oxide and carbon dioxide in monoethanolamine+ water by laminar liquid jet. Ind Eng Chem Res 2012;51(50):16517–24 链接1

[56] Mangalapally HP, Hasse H. Pilot plant study of post-combustion carbon dioxide capture by reactive absorption: Methodology, comparison of different structured packings, and comprehensive results for monoethanolamine. Chem Eng Res Des 2011;89(8):1216–28 链接1

[57] IEA Greenhouse Gas R&D Programme. CO2 capture at gas fired power plants. Cheltenham: IEA Environmental Projects, Ltd.; 2012 Jul.

[58] Whitman WG. The two film theory of gas absorption. Int J Heat Mass Tran 1962;5(5):429–33 链接1

[59] Razi N, Svendsen HF, Bolland O. Validation of mass transfer correlations for CO2 absorption with MEA using pilot data. Int J Greenh Gas Con 2013;19:478–91 链接1

[60] Billet R, Schultes M. Predicting mass transfer in packed columns. Chem Eng Technol 1993;16(1):1–9 链接1

[61] Tsai RE, Seibert AF, Eldridge RB, Rochelle GT. A dimensionless model for predicting the mass-transfer area of structured packing. AIChE J 2011;57(5):1173–84 链接1

[62] Chilton TH, Colburn AP. Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction. Ind Eng Chem 1934;26(11):1183–7 链接1

[63] Towler G, Sinnott RK. Chemical engineering design: Principles, practice and economics of plant and process design. 2nd ed. Oxford: Butterworth-Heinemann; 2012.

[64] Sinnott RK, Towler G. Chemical engineering design. 5th ed. Oxford: Butterworth-Heinemann; 2009.

[65] Strigle RF.Random packings and packed towers: Design and applications. 2nd ed. Houston: Gulf Publishing Company; 1994.

[66] Canepa R, Wang M, Biliyok C, Satta A. Thermodynamic analysis of combined cycle gas turbine power plant with post-combustion CO2 capture and exhaust gas recirculation. P I Mech Eng E– J Pro 2013;227(2):89–105.

[67] Hoek PJ. Large and small scale liquid maldistribution in a packed column [dissertation]. Delft: Delft University of Technology; 1983.

相关研究