期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第2期 doi: 10.1016/J.ENG.2017.02.002

人工与自然再利用CO2进行DME生产:我们有更紧密的合作吗?

Department of Chemical Engineering, University of Salamanca, Salamanca 37008, Spain

收稿日期: 2016-11-22 修回日期: 2017-01-12 录用日期: 2017-01-30 发布日期: 2017-03-16

下一篇 上一篇

摘要

这项工作使用数学优化方法来分析和比较以人工方式捕获二氧化碳(CO 2 )或以木质纤维素形式自然捕获的CO 2 的设施。将生物质用于生产相同的产品二甲醚(DME)。自然界中,植物通过光合作用捕获CO 2 以生长。这里讨论的第一个过程的设计基于上层结构优化方法,以便选择将木质纤维素生物质转化为DME的技术。生物质被气化;接下来,必须先使用重整,洗涤和碳捕获技术纯化粗制合成气,然后才能将其用于直接生产DME。或者,可以捕获CO 2 并用于通过氢化生产DME。氢(H 2 )是通过利用太阳能将水分解而产生的。已经设计了基于光伏(PV)太阳能或聚光太阳能(CSP)技术的设施;他们的月度运行基于太阳能的可用性,是使用多周期方法确定的。当前的技术发展水平使生物质具有碳捕集技术的优势,因为耗水量和经济参数均对其有利。但是,由于生长生物质所需的面积和消耗的水总量(如果还要考虑植物的生长),使用生物质的决定并不是一个简单的决定。

图片

图1

图2

图3

参考文献

[ 1 ] Overview of greenhouse gases [Internet]. Washington, DC: US Environmental Protection Agency. [updated 2017 Feb 14; cited 2017 Mar]. Available from: https://www.epa.gov/ghgemissions/overview-greenhouse-gases.

[ 2 ] National Energy Technology Laboratory. CO2 utilization focus area [Internet]. Washington, DC: US Department of Energy. [cited 2017 Mar]. Available from: https://www.netl.doe.gov/research/coal/carbon-storage/research-and-development/co2-utilization.

[ 3 ] Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 2013;6(11):3112–35 链接1

[ 4 ] Davis W, Martín M. Optimal year-round operation for methane production from CO2 and water using wind and/or solar energy. J Clean Prod 2014;80:252–61 链接1

[ 5 ] Martín M, Grossmann IE. Optimal integration of a self sustained algae based facility with solar and/or wind energy. J Clean Prod 2017;145:336–47 链接1

[ 6 ] Martín M. Optimal year-round production of DME from CO2 and water using renewable energy. J CO2 Util 2016;13:105–13 链接1

[ 7 ] Martín M, Grossmann IE. On the systematic synthesis of sustainable biorefineries. Ind Eng Chem Res 2013;52(9):3044–64 链接1

[ 8 ] Peral E, Martín M. Optimal production of dimethyl ether from switchgrass-based syngas via direct synthesis. Ind Eng Chem Res 2015;54(30):7465–75 链接1

[ 9 ] Grossmann IE, Caballero JA, Yeomans H. Mathematical programming approaches to the synthesis of chemical process systems. Korean J Chem Eng 1999;16(4):407–26 链接1

[10] Sinnott RK, Towler G. Chemical engineering design. 5th ed. Oxford: Butterworth-Heinemann; 2009.

[11] Martín M, Grossmann IE. Energy optimization of hydrogen production from lignocellulosic biomass. Comput Chem Eng 2011;35(9):1798–806 链接1

[12] Martín L, Martín M. Optimal year-round operation of a concentrated solar energy plant in the south of Europe. Appl Therm Eng 2013; 59(1–2):627–33 链接1

[13] Almena A, Martín M. Techno-economic analysis of the production of epichlorohydrin from glycerol. Ind Eng Chem Res 2016;55(12):3226–38 链接1

[14] Record yield for Miscanthus crop [Internet]. Aberystwyth: Farming Futures; c2010 [cited 2016 Sep 28]. Available from: http://www.farmingfutures.org.uk/blog/record-yield-miscanthus-crop.

[15] Average annual precipitation for Germany [Internet]. Smithers: Current Results Publishing, Ltd.; c2017 [cited 2017 Mar]. Available from: https://www.currentresults.com/Weather/Germany/average-yearly-precipitation.php.

[16] Qin X, Mohan T, El-Halwagi M, Cornforth G, McCarl BA. Switchgrass as an alternate feedstock for power generation: An integrated environmental, energy and economic life-cycle assessment. Clean Technol Envir 2006; 8(4):233–49 链接1

[17] David J, Herzog H. The cost of carbon capture [Internet]. [cited 2017 Mar]. Available from: http://sequestration.mit.edu/pdf/David_and_Herzog.pdf.

相关研究