期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.006

微波熔炼在锡粉回收中的工业应用

a Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
c Yunnan Tin Group (Holding) Company Limited, Gejiu, Yunnan 661000, China
d Chemical Engineering Program, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates

收稿日期: 2017-01-21 修回日期: 2017-03-15 录用日期: 2017-03-27 发布日期: 2017-05-17

下一篇 上一篇

摘要

本文探讨了微波加热在工业锡粉熔化中的应用。对离心雾化法制备的金属锡粉的形貌和粒径进行了表征锡粉颗粒均且呈球形,90% 的颗粒粒径为38~75 μm。过介电性能测试,研究了锡粉的微波吸收特性微波的穿作用对锡粉具有良好的整体加热能。温度高于150℃时,微波加热锡粉的主要机制是电导损耗设计开发了20 kW 微波熔炼锡合金装备,并将其应用于产业化该装备的加热率与常规方法相比能提高10 倍以上,缩短了熔炼工艺研究结果表明,微波加热加快了升温率,缩短了熔炼时间,锡回收率为97.79%,渣量仅为1.65%,其他损失低于0.56%;单位能耗仅为0.17 kW·h·kg−1远低于传统方法所要的能量。因此微波冶炼提高了加热效率,降低了能耗。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Louzguine-Luzgin DV, Xie GQ, Li S, Inoue A, Yoshikawa N, Mashiko K, et al.Microwave-induced heating and sintering of metallic glasses. J Alloys Compd 2009;483(1–2):78–81 链接1

[ 2 ] Mondal A, Shukla A, Upadhyaya A, Agrawal D. Effect of porosity and particle size on microwave heating of copper. Sci Sinter 2010;42(2):169–82 链接1

[ 3 ] Anklekar RM, Agrawal DK, Roy R. Microwave sintering and mechanical properties of PM copper steel. Powder Metall 2001;44(4):355–62 链接1

[ 4 ] Anklekar RM, Bauer K, Agrawal DK, Roy R. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall 2005;48(1):39–46 链接1

[ 5 ] Plazl I, Pipus G, Koloini T. Microwave heating of the continuous flow catalytic reactor in a nonuniform electric field. AIChE J 1997;43(3):754–60 链接1

[ 6 ] Roy R, Agrawal D, Cheng J, Gedevanishvili S. Full sintering of powder-metal bodies in a microwave field. Nature 1999;399(6737):668–70 链接1

[ 7 ] Rybakov KI, Semenov VE, Egorov SV, Eremeev AG, Plotnikov IV, Bykov YV. Microwave heating of conductive powder materials. J Appl Phys 2006;99(2):023506 链接1

[ 8 ] Peng J, Zhang L, Xia H, Ju S, Chen G, Xu L. New technology of unconventional metallurgy.Beijing: Metallurgical Industry Press; 2015.

[ 9 ] Birnboim A, Gershon D, Calame J, Birman A, Carmel Y, Rodgers J, et al.Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz. J Am Ceram Soc 1998;81(6):1493–501 链接1

[10] Mishra RR, Sharma AK. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos Part A: Appl Sci Manuf 2016;81:78–97 链接1

[11] Rong Z, Fan X, Yang F, Cai X, Li G. Microwave activated hot pressing: A new consolidation technique and its application to fine crystal bismuth telluride based compounds. Powder Technol 2014;267:119–25 链接1

[12] Rong Z, Fan X, Yang F, Cai X, Han X, Li G. Microwave activated hot pressing: A new opportunity to improve the thermoelectric properties of n-type Bi2Te3?xSex bulks. Mater Res Bull 2016;83:122–7 链接1

[13] Yang F, Fan X, Rong Z, Cai X, Li G. Lattice thermal conductivity reduction due to in situ-generated nano-phase in Bi0.4Sb1.6Te3 alloys by microwave-activated hot pressing. J Electron Mater 2014;43(11):4327–34 链接1

[14] Fan X, Rong Z, Yang F, Cai X, Han X, Li G. Effect of process parameters of microwave activated hot pressing on the microstructure and thermoelectric properties of Bi2Te3-based alloys. J Alloys Compd 2015;630:282–7 链接1

[15] Chen G, Peng H, Silberschmidt VV, Chan Y, Liu C, Wu F. Performance of Sn-3.0Ag-0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing. J Alloys Compd 2016;685:680–9 链接1

[16] Minagawa K, Kakisawa H, Osawa Y, Takamori S, Halada K. Production of fine spherical lead-free solder powders by hybrid atomization. Sci Technol Adv Mater 2005;6(3–4):325–9 链接1

[17] Plookphol T, Wisutmethangoon S, Gonsrang S. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization. Powder Technol 2011;214(3):506–12 链接1

[18] Gerdes T, Willert-Porada M, Park HS. Microwave sintering of ferrous PM materials. In: Proceedings of the International Conference on Powder Metallurgy & Particulate Materials ; 2006 Jun 18–21; San Diego , USA. New Jersey: Metal Powder Industries Federation; 2006.

[19] Mishra P, Upadhyaya A, Sethi G. Modeling of microwave heating of particulate metals. Metall Mater Trans B 2006;37(5):839–45 链接1

[20] Mondal A, Agrawal D, Upadhyaya A. Microwave heating of pure copper powder with varying particle size and porosity. J Microw Power Electromagn Energy 2008;43(1):5–10 链接1

[21] Tripathi M, Sahu JN, Ganesan P, Dey TK. Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Fuel 2015;153:257–66 链接1

[22] Chandrasekaran S, Basak T, Ramanathan S. Experimental and theoretical investigation on microwave melting of metals. J Mater Process Technol 2011;211(3):482–7 链接1

[23] Luo SD, Yan M, Schaffer GB, Qian M. Sintering of titanium in vacuum by microwave radiation. Metall Mater Trans A 2011;42(8):2466–74 链接1

相关研究