期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.03.008

低蛋白日粮中添加亮氨酸通过雷帕霉素靶蛋白信号通路增加成年大鼠骨骼肌重量及蛋白质合成

a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
b State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China

录用日期: 2017-08-01 发布日期: 2017-10-31

下一篇 上一篇

摘要

低蛋白日粮会减少动物组织中蛋白质沉积,影响骨骼肌增重。本文旨在研究低蛋白日粮中添加亮氨酸对成年大鼠骨骼肌重量和蛋白质合成的影响。试验选取36只平均体重为(214.4 ± 2.4)g的成年SD雄性大鼠,按体重相近原则平均分为3个处理,每个处理12个重复,每个重复1只大鼠。3个处理分别饲喂20%酪蛋白(20%C,CON)、10%酪蛋白 + 丙氨酸(10%C + Ala,R)以及10%酪蛋白 + 亮氨酸(10%C + Leu,RL)日粮,试验期为11 d,其中,10%C + Ala组和10%C + Leu组为等氮日粮组。试验第11天,所有大鼠大剂量一次性腹腔注射L-[ring-2H5]苯丙氨酸注射液,测定血清中的氨基酸含量、比目鱼肌和腓肠肌重量、蛋白质合成速率及mTOR信号通路相关分子的表达。结果表明,在3个处理中,RL组血清亮氨酸含量最高(P < 0.05),而异亮氨酸含量最低(P < 0.05);CON组的缬氨酸含量低于R和RL组(P < 0.05),但采食量、蛋白质合成速度和4EBP1的磷酸化高于R和RL组(P < 0.05),同时腹脂重量显著下降(P < 0.05)。与R组相比,RL组可以增加腓肠肌重量(P < 0.05),促进S6K1磷酸化(P < 0.05),增加骨骼肌蛋白质合成(P < 0.05)。本文结论如下,在成年大鼠长期采食低蛋白日粮的情况下,日粮中添加亮氨酸可以改善大鼠的生长性能,通过提高mTOR通路中S6K1磷酸化水平,促进大鼠骨骼肌蛋白质合成,抑制蛋白质降解。

图片

图1

图2

图3

参考文献

[ 1 ] Marini M, Veicsteinas A. The exercised skeletal muscle: A review. Eur J Transl Myol 2010;20(3):105–20 链接1

[ 2 ] Manjarín R, Columbus DA, Suryawan A, Nguyen HV, Hernandez-García AD, Hoang NM, et al.. Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs. Amino Acids 2016;48(1):257–67 链接1

[ 3 ] Gautsch TA, Anthony JC, Kimball SR, Paul GL, Layman DK, Jefferson LS. Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Physiol 1998;274(2 Pt 1):C406–14.

[ 4 ] Yao K, Yin Y, Chu W, Liu Z, Deng D, Li T, et al.. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 2008;138(5):867–72.

[ 5 ] Sugawara T, Ito Y, Nishizawa N, Nagasawa T. Supplementation with dietary leucine to a protein-deficient diet suppresses myofibrillar protein degradation in rats. J Nutr Sci Vitaminol (Tokyo) 2007;53(6):552–5 链接1

[ 6 ] Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, et al.. Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 2002;51(4):928–36 链接1

[ 7 ] Li F, Yin Y, Tan B, Kong X, Wu G. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 2011;41(5):1185–93 链接1

[ 8 ] Columbus DA, Fiorotto ML, Davis TA. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 2015;47(2):259–70 链接1

[ 9 ] Deng D, Yao K, Chu W, Li T, Huang R, Yin Y, et al.. Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 2009;20(7):544–52 链接1

[10] Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 2000;130(10):2413–9.

[11] Benevenga NJ, Calvert C, Eckhert CD, Fahey GC, Greger JL, Keen CL, et al., editors. Nutrient requirements of laboratory animals. 4th ed. Washington: National Academies Press; 1995.

[12] Mao X, Zeng X, Huang Z, Wang J, Qiao S. Leptin and leucine synergistically regulate protein metabolism in C2C12 myotubes and mouse skeletal muscles. Br J Nutr 2013;110(2):256–64 链接1

[13] Yin F, Liu Y, Yin Y, Kong X, Huang R, Li T, et al.. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 2009;37(2):263–70 链接1

[14] Bregendahl K, Liu L, Cant JP, Bayley HS, McBride BW, Milligan LP, et al.. Fractional protein synthesis rates measured by an intraperitoneal injection of a flooding dose of L-[ring-2H5]phenylalanine in pigs. J Nutr 2004;134(10):2722–8.

[15] McNurlan MA, Essén P, Thorell A, Calder AG, Anderson SE, Ljungqvist O, et al.. Response of protein synthesis in human skeletal muscle to insulin: An investigation with L-[2H5]phenylalanine. Am J Physiol 1994;267(1 Pt 1):E102–8.

[16] Suryawan A, Torrazza RM, Gazzaneo MC, Orellana RA, Fiorotto ML, El-Kadi SW, et al.. Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways. Pediatr Res 2012;71(4 Pt 1):324–31 链接1

[17] Hayase K, Yokogoshi H. Effect of exercise on tissue protein synthesis in rats. Biosci Biotechnol Biochem 1992;56(10):1637–9 链接1

[18] Balage M, Dupont J, Mothe-Satney I, Tesseraud S, Mosoni L, Dardevet D. Leucine supplementation in rats induced a delay in muscle IR/PI3K signaling pathway associated with overall impaired glucose tolerance. J Nutr Biochem 2011;22(3):219–26 链接1

[19] Zeanandin G, Balage M, Schneider SM, Dupont J, Hébuterne X, Mothe-Satney I, et al.. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: An insulin signaling pathway approach. Age (Dordr) 2012;34(2):371–87 链接1

[20] Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu Y. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007;56(6):1647–54 链接1

[21] Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr 1984;4:409–54 链接1

[22] Dardevet D, Sornet C, Bayle G, Prugnaud J, Pouyet C, Grizard J. Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucine-supplemented meal. J Nutr 2002;132(1):95–100.

[23] Rieu I, Balage M, Sornet C, Debras E, Ripes S, Rochon-Bonhomme C, et al.. Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats. Nutrition 2007;23(4):323–31 链接1

[24] Churchward-Venne TA, Breen L, Di Donato DM, Hector AJ, Mitchell CJ, Moore DR, et al.. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial. Am J Clin Nutr 2014;99(2):276–86 链接1

[25] Hong S, Layman DK. Effects of leucine on in vitro protein synthesis and degradation in rat skeletal muscles. J Nutr 1984;114(7):1204–12.

[26] Balage M, Dardevet D. Long-term effects of leucine supplementation on body composition. Curr Opin Clin Nutr Metab Care 2010;13(3):265–70 链接1

[27] Kim IY, Schutzler S, Schrader A, Spencer H, Kortebein P, Deutz NE, et al.. Quantity of dietary protein intake, but not pattern of intake, affects net protein balance primarily through differences in protein synthesis in older adults. Am J Physiol Endocrinol Metab 2015;308(1):E21–8 链接1

[28] Mitchell CJ, Churchward-Venne TA, Cameron-Smith D, Phillips SM. What is the relationship between the acute muscle protein synthesis response and changes in muscle mass? J Appl Physiol 2015;118(4):495–7 链接1

[29] Kimball SR, Jefferson LS. Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochem Biophys Res Commun 2004;313(2):423–7 链接1

[30] Avruch J, Lin Y, Long X, Murthy S, Ortiz-Vega S. Recent advances in the regulation of the TOR pathway by insulin and nutrients. Curr Opin Clin Nutr Metab Care 2005;8(1):67–72 链接1

[31] Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: Do all roads pass through mTOR? Oncogene 2006;25(48):6347–60 链接1

[32] Xu W, Bai K, He J, Su W, Dong L, Zhang L, et al.. Leucine improves growth performance of intrauterine growth retardation piglets by modifying gene and protein expression related to protein synthesis. Nutrition 2016;32(1):114–21 链接1

[33] Kimball SR, Horetsky RL, Jefferson LS. Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 1998;273(47):30945–53 链接1

[34] Vary T. Oral leucine enhances myocardial protein synthesis in rats acutely administered ethanol. J Nutr 2009;139(8):1439–44 链接1 链接2

相关研究