期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.013

钾/锰助剂对氮掺杂碳纳米管负载铁基催化剂在CO2加氢过程中的影响研究

a Scientific Equipment Center, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
b Laboratory of Industrial Chemistry, Ruhr-University Bochum, Bochum 44780, Germany
c Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
d Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
e Engler-Bunte-Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany

收稿日期: 2017-02-02 修回日期: 2017-04-04 录用日期: 2017-04-20 发布日期: 2017-05-26

下一篇 上一篇

摘要

氮掺杂碳纳米管(NCNTs) 作为载体负载铁(Fe) 纳米颗粒,可应用于CO2多相催化加氢反应(633 K和25 bar)。当将钾(K) 和锰(Mn) 作为助催化剂时,Fe/NCNT 展现出优异的CO2 加氢性能,在体积空速(GHSV) 为3.1 L·(g·h)–1 时转化率可达34.9%。当使用K 作为助催化剂时,反应对烯烃和短链烷烃具有高的选择性。当K 和Mn 同时作为助催化剂时,其催化活性能够稳定地维持60 h。助催化剂Mn 的结构效应通过X 射线衍射、氢气程序升温还原以及近边X 射线吸收精细结构进行表征。助催化剂Mn 不仅能够稳定中间态FeO,且能降低程序升温还原的起始温度。通过探针反应NH3 的催化分解来表征助催化剂效应。当K 和Mn 作为助催化剂时,Fe/NCNT 具有最好的催化活性。在还原条件下,当K 作为助催化剂时,Fe/NCNT 具有最优异的热稳定性。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 2011;40(7):3703–27 链接1

[ 2 ] Chew LM, Kangvansura P, Ruland H, Schulte HJ, Somsen C, Xia W, et al.Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation. Appl Catal A Gen 2014;482:163–70 链接1

[ 3 ] Schulz H, Riedel T, Schaub G. Fischer-Tropsch principles of co-hydrogenation on iron catalysts. Top Catal 2005;32:117–24 链接1

[ 4 ] Schulz H. Comparing Fischer-Tropsch synthesis on iron- and cobalt catalysts: The dynamics of structure and function. Stud Surf Sci Catal 2007;163:177–99 链接1

[ 5 ] Abbaslou RMM, Tavassoli A, Soltan J, Dalai AK. Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis: Effect of catalytic site position. Appl Catal A Gen 2009;367(1–2):47–52 链接1

[ 6 ] Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst. Top Catal 2003;26(1):41–54 链接1

[ 7 ] Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, et al.Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Appl Catal A Gen 1999;186(1–2):201–13 链接1

[ 8 ] Srinivas S, Malik RK, Mahajani SM. Fischer-Tropsch synthesis using bio-syngas and CO2. Energy Sustain Dev 2007;11(4):66–71 链接1

[ 9 ] Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J Am Chem Soc 2008;130(29):9414–9 链接1

[10] de Smit E, Beale AM, Nikitenko S, Weckhuysen BM. Local and long range order in promoted iron-based Fischer-Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study. J Catal 2009;262:244–56 链接1

[11] Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J. Fischer-Tropsch synthesis by nano-structured iron catalyst. J Nat Gas Chem 2010;19(3):284–92 链接1

[12] Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J. Deactivation studies of nano-structured iron catalyst in Fischer-Tropsch synthesis. J Nat Gas Chem 2010;19(3):333–40 链接1

[13] de Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, et al.Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μ c. J Am Chem Soc 2010;132(42):14928–41 链接1

[14] Xiong H, Moyo M, Motchelaho MA, Jewell LL, Coville NJ. Fischer-Tropsch synthesis over model iron catalysts supported on carbon spheres: The effect of iron precursor, support pretreatment, catalyst preparation method and promoters. Appl Catal A Gen 2010;388(1–2):168–78 链接1

[15] Yu G, Sun B, Pei Y, Xie S, Yan S, Qiao M, et al.FexOy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis. J Am Chem Soc 2010;132(3):935–7 链接1

[16] Dorner RW, Hardy DR, Williams FW, Willauer HD. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy Environ Sci 2010;3(7):884–90 链接1

[17] Dorner RW, Hardy DR, Williams FW, Willauer HD. K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst’s active phase. Appl Catal A Gen 2010;373(1–2):112–21 链接1

[18] Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ. Fischer-Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A Gen 2005;287(1):60–7 链接1

[19] Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL. Fischer-Tropsch synthesis: An in situ TPR-EXAFS/XANES investigation of the influence of group I alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts. J Phys Chem C 2010;114(17):7895–903 链接1

[20] Tao Z, Yang Y, Wan H, Li T, An X, Xiang H, et al.Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst. Catal Lett 2007;114(3):161–8 链接1

[21] Campos A, Lohitharn N, Roy A, Lotero E, Goodwin JG, Spivey JJ. An activity and XANES study of Mn-promoted, Fe-based Fischer-Tropsch catalysts. Appl Catal A Gen 2010;375(1):12–6 链接1

[22] Ribeiro MC, Jacobs G, Pendyala R, Davis BH, Cronauer DC, Kropf AJ, et al.Fischer-Tropsch synthesis: Influence of Mn on the carburization rates and activities of Fe-based catalysts by TPR-EXAFS/XANES and catalyst testing. J Phys Chem C 2011;115:4783–92 链接1

[23] Davis BH. Fischer-Tropsch synthesis: Reaction mechanisms for iron catalysts. Catal Today 2009;141(1–2):25–33 链接1

[24] Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012;335(6070):835–8 链接1

[25] Tavasoli A, Sadagiani K, Khorashe F, Seifkordi A, Rohani A, Nakhaeipour A. Cobalt supported on carbon nanotubes—A promising novel Fischer-Tropsch synthesis catalyst. Fuel Process Technol 2008;89(5):491–8 链接1

[26] van Steen E, Prinsloo FF. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catal Today 2002;71(3–4):327–34 链接1

[27] Schulte HJ, Graf B, Xia W, Muhler M. Nitrogen- and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis. ChemCatChem 2012;4(3):350–5 链接1

[28] Dorner RW, Hardy DR, Williams FW, Willauer HD. Catalytic CO2 hydrogenation to feedstock chemicals for jet fuel synthesis using multi-walled carbon nanotubes as support. In: Hu YH, editor Advances in CO2 conversion and utilization. Washington DC: American Chemical Society; 2010. p. 125–39 链接1

[29] Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M, et al.The formation of nitrogen-containing functional groups on carbon nanotube surfaces: A quantitative XPS and TPD study. Phys Chem Chem Phys 2010;12(17):4351–9 链接1

[30] Kowalczyk Z, Sentek J, Jodzis S, Muhler M, Hinrichsen O. Effect of potassium on the kinetics of ammonia synthesis and decomposition over fused iron catalyst at atmospheric pressure. J Catal 1997;169(2):407–14 链接1

[31] Arabczyk W, Zamlynny J. Study of the ammonia decomposition over iron catalysts. Catal Lett 1999;60(3):167–71 链接1

[32] Kangvansura P, Chew LM, Saengsui W, Santawaja P, Poo-arporn Y, Muhler M, et al.Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes. Catal Today 2016;275:59–65 链接1

[33] Xia W, Jin C, Kundu S, Muhler M. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 2009;47(3):919–22 链接1

[34] Boot LA, van Dillen AJ, Geus JW, van Buren FR. Iron-based dehydrogenation catalysts supported on zirconia. I. Preparation and characterization. J Catal 1996;163(1):186–94 链接1

[35] Poo-arporn Y, Chirawatkul P, Saengsui W, Chotiwan S, Kityakarn S, Klinkhieo S, et al.Time-resolved XAS (Bonn-SUT-SLRI) beamline at SLRI. J Synchrotron Radiat 2012;19(6):937–43 链接1

[36] Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 2005;12(4):537–41 链接1

[37] Chew LM, Ruland H, Schulte HJ, Xia W, Muhler M. CO2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes. J Chem Sci 2014;126(2):481–6 链接1

[38] Wimmers OJ, Arnoldy P, Moulijn JA. Determination of the reduction mechanism by temperature-programmed reduction: Application to small iron oxide (Fe2O3) particles. J Phys Chem C 1986;90(7):1331–7 链接1

[39] Pernicone N, Ferrero F, Rossetti I, Forni L, Canton P, Riello P, et al.Wüstite as a new precursor of industrial ammonia synthesis catalysts. Appl Catal A Gen 2003;251(1):121–9 链接1

[40] Yeo SC, Han SS, Lee HM. Mechanistic investigation of the catalytic decomposition of ammonia (NH3) on an Fe(100) surface: A DFT study. J Phys Chem C 2014;118(10):5309–16 链接1

[41] Jedynak A, Kowalczyk Z, Szmigiel D, Rarog W, Zielinski J. Ammonia decomposition over the carbon-based iron catalyst promoted with potassium. Appl Catal A Gen 2002;237(1–2):223–6 链接1

[42] Dad M, Fredriksson H, van de Loosdrecht J, Thuene P, Niemantsverdriet J. Stabilization of iron by manganese promoters in uniform bimetallic FeMn Fischer-Tropsch model catalysts prepared from colloidal nanoparticles. Catal Struct React 2015;1(2):101–9 链接1

[43] Grzybek T, Klinik J, Papp H, Baerns M. Characterization of Cu and K containing Fe/Mn oxide catalysts for Fischer-Tropsch synthesis. Chem Eng Technol 1990;14(1):156–61 链接1

[44] Lee JF, Chern WS, Lee MD. Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium. Can J Chem Eng 1992;70(3):511–5 链接1

相关研究