期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.016

复合镍基催化剂催化CO2 光热甲烷化反应中氧化铈和氧化钛的助催化作用

Particles and Catalysis Research Laboratory, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

收稿日期: 2017-01-24 修回日期: 2017-04-05 录用日期: 2017-04-27 发布日期: 2017-05-17

下一篇 上一篇

摘要

太阳能驱动二氧化碳(CO2) 转化为燃料是解决CO2 减排和快速增长的世界能源需求的理想方案。本文利用光照辐射镍基负载催化剂床层引发加热效应以促进CO2 的转化,研究了不同组成的氧化铈-氧化钛复合氧化物载体及其对光热CO2 转化的影响。提高光热CO2 甲烷化活性的两个至关重要的因素分别是:①优化的镍颗粒负载对于高活性催化面积及用于加热催化床层的更高的光吸收能力是必需的;②载体上的缺陷位对于促进CO2 吸附及随后的活化是必需的。载体中的钛对维持掺杂氧化钛的氧化铈上的氧空位缺陷起着关键作用。当氧化铈和氧化钛混合比例理想时,再结合高光照吸收以及稳定的还原状态,有利于CO2 吸附及随后高效光热CO2 甲烷化反应的发生。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett 2014;14(9):5405–12 链接1

[ 2 ] Zhang X, Chen Y, Liu R, Tsai DP. Plasmonic photocatalysis. Rep Prog Phys 2013;76(4):046401 链接1

[ 3 ] Lou Z, Wang Z, Huang B, Dai Y. Synthesis and activity of plasmonic photocatalysts. ChemCatChem 2014;6(9):2456–76 链接1

[ 4 ] Cheng H, Fuku K, Kuwahara Y, Mori K, Yamashita H. Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J Mater Chem A 2015;3(10):5244–58 链接1

[ 5 ] Jiang R, Li B, Fang C, Wang J. Metal/semiconductor hybrid nanostructures for plasmon—Enhanced applications. Adv Mater 2014;26(31):5274–309 链接1

[ 6 ] Wang C, Ranasingha O, Natesakhawat S, Ohodnicki PR, Andio M, Lewis JP, et al.Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013;5(15):6968–74 链接1

[ 7 ] Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, et al.Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: An alternative approach for solar fuel production. Angew Chem 2014;126(43):11662–6.German 链接1

[ 8 ] Trovarelli A, Deleitenburg C, Dolcetti G, Lorca J. CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: The role of surface and bulk ceria. J Catal 1995;151(1):111–24 链接1

[ 9 ] Sakurai H, Haruta M. Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides. Appl Catal A 1995;127(1–2):93–105 链接1

[10] Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 2011;40(7):3703–27 链接1

[11] Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, et al.Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014;345(6196):546–50 链接1

[12] Yang X, Kattel S, Senanayake SD, Boscoboinik JA, Nie X, Graciani J, et al.Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J Am Chem Soc 2015;137(32):10104–7 链接1

[13] Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, et al.High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc Natl Acad Sci USA 2009;106(13):4975–80 链接1

[14] Park JB, Graciani J, Evans J, Stacchiola D, Senanayake SD, Barrio L, et al.Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: High water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J Am Chem Soc 2010;132(1):356–63 链接1

[15] Graciani J, Plata JJ, Sanz JF, Liu P, Rodriguez JA. A theoretical insight into the catalytic effect of a mixed-metal oxide at the nanometer level: The case of the highly active metal/CeOx/TiO2(110) catalysts. J Chem Phys 2010;132(10):104703 链接1

[16] Farmer JA, Campbell CT. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010;329(5994):933–6 链接1

[17] Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, et al.Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013;341(6147):771–3 链接1

[18] Kho ET, Lovell E, Wong RJ, Scott J, Amal R. Manipulating ceria-titania binary oxide features and their impact as nickel catalyst supports for low temperature steam reforming of methane. Appl Catal A 2017;530:111–24 链接1

[19] Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 1995;99(45):16646–54 链接1

[20] Chen HI, Chang HY. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram Int 2005;31(6):795–802 链接1

[21] Rahman MM, Im SH, Lee JJ. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale 2016;8(11):5884–91 链接1

[22] Bereketidou O, Goula M. Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts. Catal Today 2012;195(1):93–100 链接1

[23] Wootsch A, Descorme C, Duprez D. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts. J Catal 2004;225(2):259–66 链接1

[24] Li Y, Wang X, Xie C, Song C. Influence of ceria and nickel addition to alumina-supported Rh catalyst for propane steam reforming at low temperatures. Appl Catal A 2009;357(2):213–22 链接1

[25] De Rogatis L, Montini T, Casula MF, Fornasiero P. Design of Rh@Ce0.2Zr0.8O2-Al2O3 nanocomposite for ethanol steam reforming. J Alloys Compd 2008;451(1–2):516–20 链接1

[26] Cuauhtémoc I, Del Angel G, Torres G, Bertin V. Catalytic wet air oxidation of gasoline oxygenates using Rh/γ-Al2O3 and Rh/γ-Al2O3-CeO2 catalysts. Catal Today 2008;(133–5):588–93.

[27] Amjad UES, Vita A, Galletti C, Pino L, Specchia S. Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts. Ind Eng Chem Res 2013;52(44):15428–36 链接1

[28] Vita A, Cristiano G, Italiano C, Pino L, Specchia S. Syngas production by methane oxy-steam reforming on Me/CeO2 (Me= Rh, Pt, Ni) catalyst lined on cordierite monoliths. Appl Catal B 2015;162:551–63 链接1

[29] Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 2006;110(14):7238–48 链接1

[30] Boudjahem AG, Monteverdi S, Mercy M, Bettahar MM. Nanonickel particles supported on silica. Morphology effects on their surface and hydrogenating properties. Catal Lett 2004;97(3):177–83 链接1

[31] Boudjahem A, Monteverdi S, Mercy M, Bettahar MM. Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. J Catal 2004;221(2):325–34 链接1

[32] Cesteros Y, Salagre P, Medina F, Sueiras J. Synthesis and characterization of several Ni/NiAl2O4 catalysts active for the 1,2,4-trichlorobenzene hydrodechlorination. Appl Catal B 2000;25(4):213–27 链接1

[33] Bal R, Tope BB, Das TK, Hegde SG, Sivasanker S. Alkali-loaded silica, a solid base: Investigation by FTIR spectroscopy of adsorbed CO2 and its catalytic activity. J Catal 2001;204(2):358–63 链接1

[34] Wang SG, Cao DB, Li YW, Wang J, Jiao H. Chemisorption of CO2 on nickel surfaces. J Phys Chem B 2005;109(40):18956–63 链接1

[35] Falconer JL, Za?li AE. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. J Catal 1980;62(2):280–5 链接1

[36] Edmonds T, Pitkethly R. The adsorption of carbon monoxide and carbon dioxide at the (111) face of nickel observed by leed. Surf Sci 1969;15(1):137–63 链接1

[37] Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 2006;600(9):1771–9 链接1

[38] Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 2003;107(22):5162–7 链接1

[39] Sinha AK, Suzuki K. Preparation and characterization of novel mesoporous ceria-titania. J Phys Chem B 2005;109(5):1708–14 链接1

[40] Rynkowski J, Farbotko J, Touroude R, Hilaire L. Redox behaviour of ceria-titania mixed oxides. Appl Catal A 2000;203(2):335–48 链接1

[41] Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 2013;52(29):7372–408 链接1

[42] Navalón S, Dhakshinamoorthy A, álvaro M, Garcia H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013;6(4):562–77 链接1

[43] Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem 2012;124(32):8132–5. German 链接1

[44] Lo CC, Hung CH, Yuan CS, Wu JF. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 2007;91(19):1765–74 链接1

[45] Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrogen Energ 2012;37(7):5527–31 链接1

相关研究