期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.021

流化床生物反应器在污水处理中的应用研究和进展综述

Particle Technology Research Center, The University of Western Ontario, London, ON N6A 5B9, Canada

收稿日期: 2017-04-30 修回日期: 2017-05-15 录用日期: 2017-05-16 发布日期: 2017-06-15

下一篇 上一篇

摘要

污水处理是保护环境和人类健康的重要过程。目前,最经济有效的污水处理方法为生物处理法,如运行时间较长的活性污泥法。然而,随着人口的增长,对新型高效污水处理技术的需求越来越迫切,流态化技术虽然已展示出能够提高许多化学与生化处理过程的效率,但尚未在大型污水处理过程中得到广泛的应用。循环流化床生物反应器 (CFBBR) 污水处理技术的研究始于加拿大西安大略大学,在该技术中,载体颗粒表面会形成一层含细菌与其他微生物的生物膜,并在反应器中呈流化状态;流态化固有的良好混合和质量传递特性,使得该技术在生活污水和工业污水处理过程中均具优势。实验室阶段和中试阶段的研究均证实了CFBBR 可去除污水中90% 以上的碳源、80%以上的氮源,且污泥产量少于活性污泥法的1/3。由于该技术的高效性,CFBBR 还可被用于传统方法难以处理的高有机碳污水处理,且具有占地面积小的优势。同时,CFBBR 在动态负荷试验 (进水量和进水浓度变化) 中也展现了良好的抗冲击和恢复性能。总的来说,CFBBR 是一种高效的污水处理方法,可在较短的水力停留时间和较小的反应器体积内处理更多的污水。此外,该反应器的紧凑设计将有助于在偏僻地区建造独立的污水处理系统。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Metcalf and Eddy Inc. Wastewater engineering: Treatment and reuse. 4th ed. New York: McGraw-Hill; 2003.

[ 2 ] Cui Y, Nakhla G, Zhu J, Patel A. Simultaneous carbon and nitrogen removal in an anoxic-aerobic circulating fluidized bed biological reactor (CFBBR). Environ Technol 2004;25(6):699–712 链接1

[ 3 ] Kunii M, Levenspiel O. Fluidization engineering. 2nd ed. Boston: Butterworth; 1991.

[ 4 ] Jahnig CE, Campbell DL, Martin HZ. History of fluidized solids development at EXXON. In: Grace JR, Matsen JM editors Fluidization. New York: Plenum Press; 1980. p. 3–24 链接1

[ 5 ] Zhu J, Zheng Y, Karamanev D, Bassi A. (Gas-)liquid-solid circulating fluidized beds and the potential applications to bioreactor engineering. Can J Chem Eng 2000;78(1):82–94 链接1

[ 6 ] Grace JR. High velocity fluidized bed reactors. Chem Eng Sci 1990;45(8):1956–66 链接1

[ 7 ] Zheng Y, Zhu JX, Wen J, Martin S, Bassi AS, Margaritis A. The axial hydrodynamic behavior in a liquid-solid circulating fluidized bed. Can J Chem Eng 1999;77(2):284–90 链接1

[ 8 ] Patel A, Zhu JX, Nakhla G. Simultaneous carbon, nitrogen, and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor. Chemosphere 2006;65(7):1103–12 链接1

[ 9 ] Chowdhury N, Zhu J, Nakhla G, Patel A, Islam M. A novel liquid-solid circulating fluidized bed bioreactor for biological nutrient removal from municipal wastewater. Chem Eng Technol 2009;32(3):364–72 链接1

[10] Andalib M, Nakhla G, Zhu J. Biological nutrient removal using a novel laboratory-scale twin fluidized bed bioreactor. Chem Eng Technol 2010;33(7):1125–36 链接1

[11] Environmental and Engineering Service Department. 2016 annual report. Adelaide wastewater treatment plant. Report. 2017 Feb. Report No.: 7397-96SPH7.

[12] Chowdhury N, Nakhla G, Zhu J, Islam M. Pilot-scale experience with biological nutrient removal and biomass yield reduction in a liquid-solid circulating fluidized bed bioreactor. Water Environ Res 2010;82(9):772–81 链接1

[13] Sutton PM, Mishra PN. Fludized bed biological wastewater treatment: Effects of scale-up on system performance. Water Sci Technol 1990;22:419–30.

[14] La Motta E, Silva E, Bustillos A, Padron H, Luque J. Combined anaerobic/aerobic secondary municipal wastewater treatment pilot-plant demonstration of the UASB/aerobic solids contact system. J Environ Eng 2007;133(4):397–403 链接1

[15] Zhang X, Wang Z, Wu Z, Lu F, Tong J, Zang L. Formation of dynamic membrane in an anaerobic membrane bioreactors for municipal wastewater treatment. Chem Eng J 2010;165(1):175–83 链接1

[16] Kim Y, Pipes OW. Solids routing in an activated sludge process during hydraulic overload. Water Sci Technol 1996;34(3–4):9–16 链接1

[17] Chowdhury N, Zhu J, Naklha G. Effect of dynamic loading on biological nutrient removal in a pilot-scale liquid-solid circulating fluidized bed bioreactor. J Environ Eng 2010;136(9):906–13 链接1

[18] US EPA. Guidelines for water reuse. Washington, DC: EPA; 2004 Sep. EPA-625/R-04–004.

[19] Galvez JM, Gomez MA, Hontoria E, Gonzelez-Lopez J. Influence of hydraulic loading and air flowrate on urban wastewater nitrogen removal with submerged fixed-film reactor. J Hazard Mater 2003;101(2):219–29 链接1

[20] Rusten B, McCoy M, Proctor R, Siljudalen G. The innovative moving bed biofilm reactor/solids contact reaction process for secondary treatment of municipal wastewater. Water Environ Res 1998;70(5):1083–9 链接1

[21] Mann AT, Mendoza-Espinosa L, Stephenson T. Performance of floating and sunken media biological aerated filters under unsteady state conditions. Water Resour 1999;33(4):1108–13 链接1

[22] Andalib M, Nakhla G, Zhu J. Dynamic testing of a twin circulating fluidized bed bioreactor (TCFBBR) for nutrient removal from municipal wastewater. Chem Eng J 2010;162(2):616–25 链接1

[23] Janssen P, Rulkens W, Rensink J, van der Roest H. The potential for metazoa in biological wastewater treatment. Water Qual Int 1998;(20):25–7.

[24] Elissen H, Hendricks T, Temmink H, Buisman C. A new reactor concept for sludge reduction using aquatic worms. Water Resour 2006;40(20):3713–8 链接1

[25] Hendrickx T, Elissen H, Buisman C. Design parameters for sludge reduction in an aquatic worm reactor. Water Resour 2010;44(3):1017–23 链接1

[26] Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi. Biochem Eng J 2006;28(2):117–22 链接1

[27] Li M, Nakhla G, Zhu J. Impact of worm predation of pseudo-steady-state of the circulating fluidized bed biofilm reactor. Bioresour Technol 2013;128:281–9 链接1

[28] Islam M, Nakhla G, Zhu J, Chowdhury N. Impact of carbon to nitrogen ratio on nutrient removal in a liquid-solid circulating fluidized bed bioreactor (LSCFB). Process Biochem 2009;44(5):578–83 链接1

[29] Haq I. Environmental impact assessment study: Leaching of chemical contaminants from a municipal dump site Hastsal, Delhi (capital of India). Int J Environ Stud 2003;60(4):363–77 链接1

[30] Eldyasti A, Chowdhury N, George N, Zhu J. Biological nutrient removal from leachate using a pilot liquid-solid circulating fluidized bed bioreactor (LSCFB). J Hazard Mater 2010;181(1–3):289–97 链接1

[31] Gourdon R, Comel C, Vermande P, Vernon J. Fractionation of the organic matter of a landfill leachate before and after aerobic or anaerobic biological treatment. Water Res 1989;23(2):167–74 链接1

[32] Kennedy KJ, Lentz EM. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB) reactors. Water Res 2000;34(14):3640–56 链接1

[33] Horan N, Gohar H, Hill B. Application of a granular activated carbon-biological fluidized bed for the treatment of landfill leachate containing high concentrations of ammonia. Water Sci Technol 1997;36(2–3):369–75 链接1

[34] Suidan MT, Schroeder AT, Nath R, Krishnan ET, Brenner RC. Treatment of CERCLA (comprehensive environmental response, compensation, and liability act) leachates by carbon-assisted anaerobic fluidized beds. Water Sci Technol 1993;27(2):273–82.

[35] del Pozo R, Tas D, Dulkadiroglu H, Orhon D, Diez V. Biodegradability of slaughterhouse wastewater with high blood content under anaerobic and aerobic conditions. J Chem Technol Biotechnol 2003;78(4):384–91 链接1

[36] Islam M, Chowdhury N, Nakhla G, Zhu J. Treatment of rendering wastewater by a liquid-solid circulating fluidized bed bioreactor (LSCFB). Proceed Water Environ Fed 2009;(12):4111–9.

[37] Andalib M, Elberbishy E, Mustafa N, Hafez H. Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage. Renew Energy 2014;71(3):276–85 链接1

[38] Vesilind PA, editor. Wastewater treatment plant design. London: Water Environment Federation and IWA Publishing; 2003.

[39] Han Y, Dague R. Laboratory studies on the temperature-phased anaerobic digestion of domestic primary sludge. Water Environ Res 1997;69(6):1139–43 链接1

[40] Bolzonella D, Pavan P, Battistoni P, Cecchi F. Mesophilic anaerobic digestion of waste activated sludge: Influence of solid retention time in the wastewater treatment process. Process Biochem 2005;40(3–4):1453–60 链接1

[41] Dagnew M, Pickel J, Parker W, Seto P. Anaerobic membrane bio-reactors for waste activated sludge digestion: Tubular versus hollow fiber membrane configurations. Environ Prog Sustain Energy 2012;32(3):598–604 链接1

[42] Lee P, Bae J, Kim J, Chen W. Mesophilic anaerobic digestion of corn thin stillage: A technical and energetic assessment of the corn-to-ethanol industry integrated with anaerobic digestion. J Chem Technol Biotechnol 2011;86(12):1514–20 链接1

[43] Andalib M, Hafez H, Elbeshbishy E, Nakhla G, Zhu J. Treatment of thin stillage in a high-rate anaerobic fluidized bed bioreactor (AFBR). Bioresour Technol 2012;121(7):411–8 链接1

[44] Agler MT, Garcia ML, Lee ES, Schlicher M, Angement LT. Thermophilic anaerobic digestion to increase the net energy balance of corn grain ethanol. Environ Sci Technol 2008;42(17):6723–9 链接1

[45] Sen D, Randall C. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part I: Semi empirical model development. Water Environ Res 2008;80(5):439–53.

[46] Sen D, Randall C. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part II: Multilayer biofilm diffusion model. Water Environ Res 2008;80(7):624–32 链接1

[47] Sen D, Randall C. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part III: Analysis and verification. Water Environ Res 2008;80(7):633–45 链接1

[48] Phillips H, Maxwell M, Johnson T, Barnard J, Rutt K, Seda J, et al.Optimizing IFAS and MMBR designs using full-scale data. In: Proceedings of the Water Environment Federation 81st Annual Technical Exhibition & Conference; 2008 Oct 18–22; Chicago, USA. Alexandria: Water Environment Federation; 2008. p. 5002–21.

[49] Chowdhury N, Nakhla G, Sen D, Zhu J. Modeling biological nutrient removal in a liquid-solid circulating fluidized bed bioreactor. J Chem Technol Biotechnol 2010;85(10):1389–401 链接1

[50] Andalib M, Nakhla G, Sen D, Zhu J. Evaluation of biological nutrient removal from wastewater by twin circulating fluidized bed bioreactor (TCFBBR) using a predictive fluidization model and AQUIFAS APP. Bioresour Technol 2011;102(3):2400–10 链接1

[51] McGehee M, Gellner J, Beck J, White C, Bruton T, Howard D. BioWin modeling of a three phase reactor IFAS system. In: Proceedings of the Water Environment Federation 82nd Annual Technical Exhibition & Conference; 2009 Oct; Orlando, USA. Alexandria: Water Environment Federation; 2009. p. 2730–50.

[52] Eldyasti A, Andalib M, Hafez H, Nakhla G, Zhu J. Comparative modeling of biological nutrient modeling from landfill leachate using a circulating fluidized bed bioreactor (CFBBR). J Hazard Mater 2011; 187 (1–3):140–9 链接1

相关研究