期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.026

面向绿色过程的膜工程

a Institute on Membrane Technology (ITM–CNR), University of Calabria, Rende 87036, Italy
b Department of Environmental and Chemical Engineering, University of Calabria, Rende 87036, Italy
c Department of Energy Engineering, Collega of Engineering, Hanyang University, Seoul 133-791, Korea
d Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

收稿日期: 2017-03-24 修回日期: 2017-05-10 录用日期: 2017-05-11 发布日期: 2017-06-15

下一篇 上一篇

摘要

绿色过程工程是实现工业可持续发展的一个重要途径。基于过程强化原则,它涉及新设备和新过程方法,期望能够给化学及其他生产领域和过程领域带来根本进步,比如降低生产成本、减小设备尺寸、降低能耗、减少废物产生及改进远程控制、信息流控制和过程弹性等。膜技术为过程强化原则做出了很大的贡献,在过去这些年,其潜力获得了广泛的认可。本文综合分析了膜技术在水处理、能源生产和天然材料提取等工业领域的应用和前景,重点强调了创新膜集成单元的协同使用存在的机遇,介绍了集成膜系统在海水淡化与原材料生产耦合工艺中的一个应用案例。本文将说明膜工程在实现“零排放”“原材料全利用”和“低能耗”等目标中的作用。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Global Water Intelligence and International Desalination Association. IDA desalination yearbook 2016?2017 . Oxford: Media Analytics Ltd.; 2016.

[ 2 ] Lee KP, Arnot TC, Mattia D.A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J Membrane Sci 2011;370(1–2):1–22 链接1

[ 3 ] Gabriel S, Baschwitz A, Mathonnière G, Fizaine F, Eleouet T. Building future nuclear power fleets: The available uranium resources constraint. Resour Policy 2013;38(4):458–69 链接1

[ 4 ] Macedonio F, Ali A, Poerio T, El-Sayed E, Drioli E, Abdel-Jawad M. Direct contact membrane distillation for treatment of oilfield produced water. Sep Purif Technol 2014;126:69–81 链接1

[ 5 ] Gude VG. Desalination and sustainability—An appraisal and current perspective. Water Res 2016;89:87–106 链接1

[ 6 ] Morillo J, Usero J, Rosado D, El Bakouri H, Riaza A, Bernaola FJ. Comparative study of brine management technologies for desalination plants. Desalination 2014;336:32–49 链接1

[ 7 ] von Medeazza GLM. “Direct” and socially-induced environmental impacts of desalination. Desalination 2005;185(1–3):57–70 链接1

[ 8 ] Fritzmann C, L?wenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216(1–3):1–76 链接1

[ 9 ] Lienhard JH, Thiel GP, Warsinger DM, Banchik LD. Low carbon desalination: Status and research, development, and demonstration needs, report of a workshop conducted at the Massachusetts Institute of Technology in association with the Global Clean Water Desalination Alliance. Cambridge: MIT Abdul Latif Jameel World Water and Food Security Lab; 2016 Nov.

[10] Johnson J, Busch M. Engineering aspects of reverse osmosis module design. Desalin Water Treat 2010;15(1–3):236–48 链接1

[11] Zhu A, Rahardianto A, Christofides PD, Cohen Y. Reverse osmosis desalination with high permeability membranes—Cost optimization and research needs. Desalin Water Treat 2010;15(1–3):256–66 链接1

[12] Elimelech M, Phillip WA. The future of seawater desalination: Energy, technology, and the environment. Science 2011;333(6043):712–7 链接1

[13] Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, et al.. Membrane-based seawater desalination: Present and future prospects. Desalination 2017;401:16–21 链接1

[14] Voutchkov N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010;261(3):354–64 链接1

[15] Villacorte LO, Tabatabai SAA, Anderson DM, Amy GL, Schippers JC, Kennedy MD. Seawater reverse osmosis desalination and (harmful) algal blooms. Desalination 2015;360:61–80 链接1

[16] Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem Eng Process 2012;51:2–17 链接1

[17] Mathioulakis E, Belessiotis V, Delyannis E. Desalination by using alternative energy: Review and state-of-the-art. Desalination 2007;203(1–3):346–65 链接1

[18] Khayet M, Mengual JI, Matsuura T. Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. J Membrane Sci 2005;252(1–2):101–13 链接1

[19] Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Sanguineti A, Arcella V, et al. .PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of PVDF molecular weight. J Membrane Sci 2014;471:237–46 链接1

[20] El-Bourawi MS, Ding Z, Ma R, Khayet M. A framework for better understanding membrane distillation separation process. J Membrane Sci 2006;285(1–2):4–29 链接1

[21] Khayet M, Matsuura T, Mengual JI. Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness. J Membrane Sci 2005;266(1–2):68–79 链接1

[22] Jin Z, Yang D, Zhang S, Jian X. Hydrophobic modification of poly (phthalazinone ether sulfone ketone) hollow fiber membrane for vacuum membrane distillation. J Membrane Sci 2008;310(1–2):20–7 链接1

[23] Tong D, Wang X, Ali M, Lan CQ, Wang Y, Drioli E, et al.. Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation. Sep Purif Technol 2016;157:1–8 链接1

[24] McCutcheon JR, McGinnis RL, Elimelech M. Desalination by a novel ammonia-carbon dioxide forward osmosis process: Influence of draw and feed solution concentrations on process performance. J Membrane Sci 2006;278(1–2):114–23 链接1

[25] Gray GT, McCutcheon JR, Elimelech M. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination 2006;197(1–3):1–8 链接1

[26] Cath TY, Childress AE, Elimelech M. Forward osmosis: Principles, applications, and recent developments. J Membrane Sci 2006;281(1–2):70–87 链接1

[27] Zhang S, Wang K, Chung TS, Chen H, Jean YC, Amy G. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J Membrane Sci 2010;360(1–2):522–35 链接1

[28] Chung TS, Luo L, Wan C, Cui Y, Amy G. What is next for forward osmosis (FO) and pressure retarded osmosis (PRO). Sep Purif Technol 2015;156(Part 2):856–60 链接1

[29] Sukitpaneenit P, Chung TS. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environ Sci Technol 2012;46(13):7358–65 链接1

[30] Zhang S, Chung TS. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density. Environ Sci Technol 2013;47(17):10085–92 链接1

[31] Sarp S, Li Z, Saththasivam J. Pressure retarded osmosis (PRO): Past experiences, current developments, and future prospects. Desalination 2016;389:2–14 链接1

[32] Kurihara, M, Sakai H, Tanioka A, Tomioka H. Role of pressure retarded osmosis (PRO) in the mega-ton project. Desalin Water Treat 2016;57(55):26518–28 链接1

[33] Wan C, Chung TS. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed. J Membrane Sci 2015;479:148–58 链接1

[34] Fernández-Torres MJ, Randall DG, Melamu R, von Blottnitz H. A comparative life cycle assessment of eutectic freeze crystallization and evaporative crystallization for the treatment of saline wastewater. Desalination 2012;306:17–23 链接1

[35] Randall DG, Nathoo J, Lewis AE. A case study for treating a reverse osmosis brine using eutectic freeze crystallization—Approaching a zero waste process. Desalination 2011;266(1–3):256–62 链接1

[36] Stover RL. Industrial and brackish water treatment with closed circuit reverse osmosis. Desalin Water Treat 2013; 51(4–6):1124–30 链接1

[37] Qiu T, Davies PA. Comparison of configurations for high-recovery inland desalination systems. Water 2012;4(3):690–706 链接1

[38] Efraty A, Barak RN, Gal Z. Closed circuit desalination—A new low energy high recovery technology without energy recovery. Desalin Water Treat 2011; 31(1–3):95–101 链接1

[39] Juby G, Zacheis A, Shih W, Ravishanker P, Mortazavi B, Nusser MD. Evaluation and selection of available processes for a zero-liquid discharge system for the Perris, California, ground water basin. Desalination and water purification research and development program report. Denver: US Department of the Interior, Bureau of Reclamation; 2008 Apr. Report No.: 149.

[40] Subramani A, Jacangelo JG. Treatment technologies for reverse osmosis concentrate volume minimization: A review. Sep Purif Technol 2014;122:472–89 链接1

[41] Drewes JE, Cath TY, Xu P, Graydon J, Veil J, Snyder S. An integrated framework for treatment and management of produc ed water. In: RPSEA Unconventional Gas Project Review Meeting; 2009 Apr 14–15; Golden, Colorado, USA; 2009.

[42] Sethi S, Walker S, Drewes J, Xu P. Existing and emerging concentrate minimization and disposal practices for membrane systems. Fla Water Resour J 2006;58:38–48.

[43] Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Ind Eng Chem Res 2001;40(12):2679–84 链接1

[44] Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 2007;7(3):526–30 链接1

[45] Drioli E, Fontananova E. Membrane materials for addressing energy and environmental challenges. Annu Rev Chem Biomol Eng 2012;3:395–420 链接1

[46] Drioli E, Curcio E, Criscuoli A, Di Profio G. Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate. J Membrane Sci 2004;239(1):27–38 链接1

[47] Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 2007;7(3): 526–30 链接1

[48] Drioli E, Di Profio G, Curcio E. Progresses in membrane crystallization. Curr Opin Chem Eng 2012;1(2):178–82 链接1

[49] Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: Energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203(1–3):260–76 链接1

[50] Macedonio F, Drioli E. Pressure-driven membrane operations and membrane distillation technology integration for water purification. Desalination 2008;223(1–3):396–409 链接1

[51] Macedonio F, Drioli E, Curcio E, Di Profio G. Experimental and economical evaluation of a membrane crystallizer plant. Desalin Water Treat 2009;9(1–3):49–53 链接1

[52] Macedonio F, Drioli E. Hydrophobic membranes for salts recovery from desalination plants. Desalin Water Treat 2010;18(1–3): 224–34 链接1

[53] Tun CM, Fane AG, Matheickal JT, Sheikholeslami R. Membrane distillation crystallization of concentrated salts—Flux and crystal formation. J Membrane Sci 2005;257(1–2):144–55 链接1

[54] Drioli E, Macedonio F. Integrated membrane systems for desalination. In: Peinemann KV, Nunes SP, editors Membrane technology: Membranes for water treatment, volume 4. Hoboken: John Wiley & Sons, Inc.; 2010. p. 93–146 链接1

[55] Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination—Energy, exergy and costs analysis. Chem Eng Res Des 2006;84(3):209–20 链接1

[56] Judd S, Jefferson B. Membrane for industrial wastewater recovery and re-use. 1st ed. Oxford: Elsevier Science Ltd.; 2003.

[57] Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane condenser as a new technology for water recovery from humidified “waste” gaseous streams. Ind Eng Chem Res 2013;52(3):1160–7 链接1

[58] Michels B, Adamczyk F, Koch J. Retrofit of a flue gas heat recovery system at the Mehrum power plant. An example of power plant lifetime evaluation in practice. In: Proceedings of the POWER-GEN Europe Conference; 2004 May25–27; Barcelona, Spain; 2004. p. 10–1.

[59] Folkedahl BC, Weber GF, Collings ME. Water extraction from coal-fired power plant flue gas. Final report. Grand Forks: University of North Dakota; 2006 Jun. Cooperative Agreement No.: DE-FC26-03NT41907.

[60] Ito A. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J Membrane Sci 2000;175(1):35–42 链接1

[61] Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M. Flue gas dehydration using polymer membranes. J Membrane Sci 2008;313(1–2):263–76 链接1

[62] Zhang L, Zhu D, Deng X, Hua B. Thermodynamic modeling of a novel air dehumidification system. Energ Buildings 2005;37(3):279–86 链接1

[63] Drioli E, Santoro S, Simone S, Barbieri G, Brunetti A, Macedonio F,et al. .ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React Funct Polym 2014;79:1–7 链接1

[64] Macedonio F, Cersosimo M, Brunetti A, Barbieri G, Drioli E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem Eng Process 2014;86:196–203 链接1

[65] Brunetti A, Santoro S, Macedonio F, Figoli A, Drioli E, Barbieri G. Waste gaseous streams: From environmental issue to source of water by using membrane condensers. Clean–Soil Air Water 2014;42(8):1145–53 链接1

[66] Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane condenser configurations for water recovery from waste gases. Sep Purif Technol 2017;181:60–8 链接1

[67] Drioli E, Criscuoli A, Macedonio F. Membrane-based desalination: An integrated approach. London: IWA Publishig; 2011.

[68] Kurihara M, Hanakawa M. Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 2013;308:131–7 链接1

[69] Kim S, Cho D, Lee MS, Oh BS, Kim JH, Kim IS. SEAHERO R&D program and key strategies for the scale-up of a seawater reverse osmosis (SWRO) system. Desalination 2009;238(1–3):1–9 链接1

[70] Kim S, Oh BS, Hwang MH, Hong S, Kim JH, Lee S, et al..An ambitious step to the future desalination technology: SEAHERO R&D program (2007–2012). Appl Water Sci 2011;1(1):11–7 链接1

相关研究