期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第4期 doi: 10.1016/J.ENG.2017.04.004

对二氧化碳具有选择性的聚环氧乙烷基薄膜的发展——从实验室到中试规模

Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany

录用日期: 2017-06-23 发布日期: 2017-08-30

下一篇 上一篇

摘要

气体膜分离法是从气流中分离二氧化碳(CO2)的最有前途的技术之一。例如,采用该技术对燃烧过程中的烟气进行处理,以达到CO2 捕集和封存的目的。聚环氧乙烷嵌段共聚物能够很好地应用于膜分离技术,如Pebax® 或PolyActive™。本文采用PolyActive™ 作为复合薄膜的选择层。在环境温度下,当CO2/N2 选择性超过55 时,这种薄膜的CO2渗透率高达4 m3(STP)·m−2·h−1·bar−1(注:1bar=105 Pa)。这种薄膜可以按照中试规模进行生产放大,而且可以设计成不同的平面膜组件。采用单一气体渗透数据作为唯一的实验输入而开发出的仿真工具可以准确预测这种膜组件的性能。在不同的中试研究中,我们利用烟气和沼气作为原料气流,反复检测这些膜和膜组件的性能。PolyActive™ 在检测中显示出了稳定的分离性能,表明PolyActive™ 非常适用于作为膜材料进行工业规模气体处理。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Sholl DS, Lively RP. Seven chemical separations to change the world. Nature 2016;532(7600):435–7 链接1

[ 2 ] United Nations. Paris Agreement [Internet].Paris: United Nations Framework Convention on Climate Change. c2014 [cited 2017 Feb 14]. Available from: http://unfccc.int/meetings/paris_nov_2015/meeting/8926.php.

[ 3 ] Hawking S. This is the most dangerous time for our planet [Internet].London: Guardian News and Media Limited or its affiliated companies. c2017 [cited 2017 Feb 14]. Available from: https://www.theguardian.com/commentisfree/2016/dec/01/stephen-hawking-dangerous-time-planet-inequality.

[ 4 ] Notz RJ, T?nnies I, McCann N, Scheffknecht G, Hasse H. CO2 capture for fossil fuel fired power plants. Chemie Ingenieur Technik 2010;82(10):1639–53.German 链接1

[ 5 ] Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 2014;39:426–43 链接1

[ 6 ] Huang Y, Merkel TC, Baker RW. Pressure ratio and its impact on membrane gas separation processes. J Membr Sci 2014;463:33–40 链接1

[ 7 ] NETL. 2016 CO2 capture technology project review meeting [Internet]. [cited 2017 Jul 17]. Available from: http://www.netl.doe.gov/events/conference-proceedings/2016/2016-co2-capture-technology-project-review-meeting#t3.

[ 8 ] Yampol’Skii YP, Shishatskii SM, Shantorovich VP, Antipov EM, Kuzmin NN, Rykov SV, et al.Transport characteristics and other physicochemical properties of aged poly(1-(trimethylsilyl)-1-propyne). J Appl Polym Sci 1993;48(11):1935–44 链接1

[ 9 ] Harms S, R?tzke K, Faupel F, Chaukura N, Budd PM, Egger W, et al.Aging and free volume in a polymer of intrinsic microporosity (PIM-1). J Adhes 2012;88(7):608–19 链接1

[10] Khan MM, Filiz V, Bengtson G, Shishatskiy S, Rahman MM, Lillepaerg J, et al.Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). J Membr Sci 2013;436:109–20. Erratum in: J Membr Sci 2015;476:610–1 链接1

[11] Kim TJ, Vr?lstad H, Sandru M, H?gg MB. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci 2013;428:218–24 链接1

[12] Hussain A, H?gg MB. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Membr Sci 2010;359(1–2):140–8 链接1

[13] Liu J, Hou X, Park HB, Lin H. High-performance polymers for membrane CO2/N2 separation. Chemistry 2016;22(45):15980–90 链接1

[14] Kuehne DL, Friedlander SK. Selective transport of sulfur dioxide through polymer membranes. 1. Polyacrylate and cellulose triacetate single-layer membranes. Ind Eng Chem Prod Res Dev 1980;19(4):609–16 链接1

[15] Kawakami M, Iwanaga H, Hara Y, Iwamoto M, Kagawa S. Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes. J Appl Polym Sci 1982;27(7):2387–93 链接1

[16] Saha S, Chakma A. Separation of CO2 from gas mixtures with liquid membranes. Energy Convers Manage 1992;33(5–8):413–20 链接1

[17] Chakma A. Separation of CO2 and SO2 from flue gas streams by liquid membranes. Energy Convers Manage 1995;36(6–9):405–10 链接1

[18] Okamoto K, Umeo N, Okamyo S, Tanaka K, Kita H. Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes. Chem Lett 1993;22(2):225–8 链接1

[19] Bondar VI, Freeman BD, Pinnau I. Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci Pol Phys 2000;38(15):2051–62 链接1

[20] Metz S, van de Ven WJC, Mulder MHV, Wessling M. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers. J Membr Sci 2005;266(1–2):51–61 链接1

[21] Lin H, Freeman BD. Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 2005;739(1–3):57–74 链接1

[22] Patel NP, Spontak RJ. Mesoblends of polyether block copolymers with poly(ethylene glycol). Macromolecules 2004;37(4):1394–402 链接1

[23] Car A, Stropnik C, Yave W, Peinemann KV. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 2008;307(1):88–95 链接1

[24] Lillep?rg J, Georgopanos P, Shishatskiy S. Stability of blended polymeric materials for CO2 separation. J Membr Sci 2014;467:269–78 链接1

[25] White LS, Wei X, Pande S, Wu T, Merkel TC. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. J Membr Sci 2015;496:48–57 链接1

[26] Merkel TC, Zhou M, Baker RW. Carbon dioxide capture with membranes at an IGCC power plant. J Membr Sci 2012;389:441–50 链接1

[27] Car A, Stropnik C, Yave W, Peinemann KV. Tailor-made polymeric membranes based on segmented block copolymers for CO2 separation. Adv Funct Mater 2008;18(18):2815–23 链接1

[28] Yave W, Car A, Wind J, Peinemann KV. Nanometric thin film membranes manufactured on square meter scale: Ultra-thin films for CO2 capture. Nanotechnology 2010;21(39):395301 链接1

[29] Yave W, Car A, Funari SS, Nunes SP, Peinemann KV. CO2-philic polymer membrane with extremely high separation performance. Macromolecules 2010;43(1):326–33 链接1

[30] Rahman MM, Lillep?rg J, Neumann S, Shishatskiy S, Abetz V. A thermodynamic study of CO2 sorption and thermal transition of PolyActive? under elevated pressure. Polymer 2016;93:132–41 链接1

[31] Yave W, Car A. Polymeric membranes for post-combustion carbon dioxide (CO2) capture. In: Basile A, Nunes SP, editors Advanced membrane science and technology for sustainable energy and environmental applications. Cambridge: Woodhead Publishing; 2011. p. 160–83 链接1

[32] Car A, Yave W, Peinemann KV, Stropnik C. Tailoring polymeric membrane based on segmented block copolymers for CO2 separation. In: Yampolskii Yu, Freeman B, editors Membrane gas separation.Chichester: John Wiley & Sons, Ltd.; 2010. p. 227–53 链接1

[33] Lillep?rg J, Pohlman J, Rahman M, Brinkmann T, Shishatskiy S, Wind J. Membranmaterialentwicklung für CO2- Abtrennungsverfahren. Chemie Ingenieur Technik 2016;88(9):1273.German 链接1

[34] Scharnagl N, Buschatz H. Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 2001;139(1 – 3 ):191–8 链接1

[35] Abetz V, Brinkmann T, Dijkstra M, Ebert K, Fritsch D, Ohlrogge K, et al.Developments in membrane research: From material via process design to industrial application. Adv Eng Mater 2006;8(5):328–58 链接1

[36] Brinkmann T, Naderipour C, Pohlmann J, Wind J, Wolff T, Esche E, et al.Pilot scale investigations of the removal of carbon dioxide from hydrocarbon gas streams using poly(ethylene oxide)-poly(butylene terephthalate) PolyActiveTM thin film composite membranes. J Membr Sci 2015;489:237–47 链接1

[37] Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. Int J Greenh Gas Control 2016;53:56–64 链接1

[38] Echt WI, Dortmundt DD, Malino HM. Fundamentals of membrane technology for CO2 removal from natural gas. In: Proceedings of the 52nd Laurance Reid Gas Conditioning Conference fundamentals manual; 2002 Feb 24–27; Norman, OK, USA. Norman: University of Oklahoma; 2002. p. 1–25.

[39] Baker RW. Membrane technology and applications.3rd ed. Chichester: John Wiley & Sons, Ltd.; 2012 链接1

[40] Ohlrogge K, Wind J, Brinkmann T. Membranes for recovery of volatile organic compounds. In: Drioli E, Giorno L, editors Comprehensive membrane science and engineering .Oxford: Academic Press; 2010. p. 213–42 链接1

[41] Brinkmann T, Pohlmann J, Withalm U, Wind J, Wolff T. Theoretical and experimental investigations of flat sheet membrane module types for high capacity gas separation applications. Chemie Ingenieur Technik 2013;85(8):1210–20 链接1

[42] Notzke H, Brinkmann T, Wolff T, Zhao L, Luhr S. inventors; Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Forschungszentrum Jülich GmbH, assignee. Membranmodul . European Patent EP3072575 A1 .2015 Mar 25. German.

[43] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena.New York: John Wiley & Sons, Ltd.; 1960.

[44] Marriott J, S?rensen E. A general approach to modelling membrane modules. Chem Eng Sci 2003;58(22):4975–90 链接1

[45] Wolff T, Brinkmann T, Kerner M, Hindersin S. CO2 enrichment from flue gas for the cultivation of algae—A field test. Greenh Gas Sci Technol 2015;5(5):505–12 链接1

[46] Efficient gas separation with SEPURAN? [Internet]. Essen: Evonik Industries AG. c2010 [cited 2017 Feb 13]. Available from: http://www.sepuran.com/product/sepuran/en/Pages/gas-separation.aspx.

[47] Shishatskiy S, Nistor C, Popa M, Nunes SP, Peinemann KV. Polyimide asymmetric membranes for hydrogen separation: Influence of formation conditions on gas transport properties. Adv Eng Mater 2006;8(5):390–7 链接1

[48] Stünkel S, Drescher A, Wind J, Brinkmann T, Repke JU, Wozny G. Carbon dioxide capture for the oxidative coupling of methane process—A case study in mini-plant scale. Chem Eng Res Des 2011;89(8):1261–70 链接1

[49] Franz A. Wasserstoff erzeugung mit Mikroalgen: Prozessstudien zur Dynamik von Wachstum, Produkterzeugung und Produktgasbehandlung [dissertation].Karlsruhe: Karlsruher Institut für Technologie; 2015. German.

相关研究