期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第4期 doi: 10.1016/J.ENG.2017.04.017

深部开采的一些挑战

1. University of Minnesota, Minneapolis, MN 55455, USA
2. Itasca International Inc., Minneapolis, MN 55401, USA

录用日期: 2017-08-03 发布日期: 2017-08-30

下一篇 上一篇

摘要

持续增长的全球矿产供给对于满足迅速增长的世界人口的需求和期望是必不可少的。这意味着要向更深处开采。由设备供应商通过自持久R&D 研发的自动开采系统,减少了矿工暴露于恶劣的工作环境并增加了安全性。为确定矿产经济地被开采出来的深度,安全性的增长在于“地面控制”和岩石力学。尽管第二次世界大战以来,为将力学应用在采矿设计上,研究者付出了许多重要的努力,但均出现过技术和组织上的障碍。相较于大多数其他工科学科所遇到的典型工程材料,原位岩石是更复杂的一种。几千年来,采矿工程在设计上大量地依赖于经验方法。随着日益向矿山深部探索,这些方法不再适用于解决21 世纪的挑战。2008 年综合岩体模型(SRM)的发展给研究者提供了分析各向异性和不连续性岩体变形行为的能力——这些属性于1966 年被国际岩石力学学会(ISRM)的主席和创始人Leopold Müller 描述为原位岩石的本质特征。运用SRM 在大尺度采矿作业数值模拟(如崩落法)上的最新进展揭露了未预料到的岩石的变形行为。大量的平行计算和云计算技术的应用提供了许多重要机会,例如,评价数值预测中的不确定性;建立现用于岩石工程中的经验法则的力学基础及其在现有经验之上的岩体行为预测的正确性;还有在深部开采的优化设计中采用离散元法。首次,采矿和岩石工程将有其自有的基于力学的“实验室”。这有望成为在未来深部高效开采设计中的主要手段。通过在有80 多年历史的塔斯马尼亚Mount Lyell 铜矿应用采矿法反演,本文以演示实验室中DEM 和SRM 程序应用的讨论作为结束。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Freeman LW, Highsmith RP. Supplying society with natural resources: The future of mining—From Agricola to Rachel Carson and beyond. The Bridge 2014;44(1):24–32.

[ 2 ] National Research Council. Can earth’s and society’s systems meet the needs of 10 billion people? Summary of a workshop. Washington, DC: The National Academies Press; 2014.

[ 3 ] Bryant P. The imperative case for innovation in the mining industry. Min Eng 2015;67(10):39.

[ 4 ] Wyndham CN, Strydom NB. Acclimatizing men to heat in climatic rooms on mines. J S Afr I Min Metall 1969;70(5):60–4.

[ 5 ] Krishnamurthy R, Shringarputale SB. Rockburst hazards in Kolar Gold Fields. In: Fairhurst C, editor Rockbursts and seismicity in mines: Proceedings of the 2nd International Symposium on Rockbursts and Seismicity in Mines; 1988 Jun 8–10; Minneapolis, MN, USA. Rotterdam: Balkema; 1990. p. 411–20.

[ 6 ] The South African OHS Commissions. Leon Commission report (volume 1): Report of the Commission of Inquiry into Safety and Health in the Mining Industry [Internet]. Johannesburg: Association of Societies for Occupational Safety and Health (ASOSH) and Chamber of Mines of South Africa; 1995 [cited 2017 Aug 20]. Available from: http://www.cwbpi.com/AIDS/reports/LeonCommissionV1.pdf.

[ 7 ] Ortlepp WD. RaSiM comes of age—A review of the contribution to the understanding and control of mine rockbursts. In: Potvin Y, Hudyma M, editors Controlling seismic risk: Sixth International Symposium on Rockburst and Seismicity in Mines proceedings; 2005 Mar 9?11; Perth, Australia. Crawley: Australian Center for Geomechanics; 2005. p. 3–20.

[ 8 ] Martin CD, Chandler NA. Stress heterogeneity and geological structures. Int J Rock Mech Min 1993;30(7):993–9 链接1

[ 9 ] Lame? MG. Leçon sur la the?orie mathe?matique de l’e?lasticite? des corps solides. Paris: Bachelier; 1852. French.

[10] Kirsch G. Die theorie der elastizität und die bedürfnisse der festigkeitslehre. Zeitschrift des Vereins Deutscher Ingenieure 1898;42(29):797–807. German.

[11] Inglis CE. Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Nav Arch 1913;55:219–30.

[12] Griffith AA. The phenomena of rupture and flow in solids. Phil Trans R Soc Lond A 1921;221:163–98.

[13] Berry DS. An elastic treatment of ground movement due to mining—I. Isotropic ground. J Mech Phys Solids 1960;8(4):280–92.

[14] Berry DS, Sales TW. An elastic treatment of ground movement due to mining—II. Transversely isotropic ground. J Mech Phys Solids 1961;9(1):52–62 链接1

[15] Berry DS, Sales TW. An elastic treatment of ground movement due to mining—III. Three dimensional problem, transversely isotropic ground. J Mech Phys Solids 1962;10(1):73–83 链接1

[16] Cook NGW, Hoek E, Pretorius JPG, Ortlepp WD, Salamon MDG. Rock mechanics applied to the study of rockbursts. J S Afr I Min Metall 1966;66:435–528.

[17] Fairhurst C. Newton in the underworld. Hydraul Fract J 2017;4(1):18–31.

[18] Filonenko-Borodich M. Theory of elasticity. Konyaeva M, translator. Moscow: Peace Publishers; 1963.

[19] Wyllie DC, Mah CW. Rock slope engineering: Civil and mining. 4th ed. New York: Spon Press; 2004.

[20] Hoek E, Brown ET. Underground excavations in rock. London: Spon Press; 1990.

[21] Hoek E, Marinos P. A brief history of the development of the Hoek-Brown failure criterion. Soils Rocks [Internet]. 2007 Nov [cited 2017 Jul 4];30(2): [about 13 p.]. Available from: https://rocscience.com/documents/hoek/references/H2007.pdf.

[22] Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support. Rock Mech 1974;6(4):189–236 链接1

[23] Barton N. 2011 Müller lecture: From empiricism, through theory, to problem solving in rock engineering [Internet]. In: The 12th ISRM International Congress on Rock Mechanics; 2011 Oct 18–21; Beijing, China; 2011[cited 2017 Jul 4]. Available from: http://www.isrm.net/gca/index.php?id=1066.

[24] Cundall PA. A computer model for simulating progressive, large scale movement in blocky rock systems. In: Rock fracture: Proceedings of the International Symposium on Rock Mechanics (volume 2); 1971 Oct 4−6; Nancy, France; 1971. p. 129–36.

[25] Cundall PA. An approach to rock mass modelling. In: Potvin Y, Carter J, Dyskin A, Jeffrey R, editors Proceedings of the 1st Southern Hemisphere International Rock Mechanics Symposium [CD-ROM]; 2008 Sep 6−19; Perth, Australia. Crawley: Australian Center for Geomechanics; 2008.

[26] Cundall PA, Pierce ME, Mas Ivar D. Quantifying the size effect of rock mass strength. In: Potvin Y, Carter J, Dyskin A, Jeffrey R, editors From rock mass to rock model: Proceedings of the 1st Southern Hemisphere International Rock Mechanics Symposium (volume 2); 2008 Sep 6−19; Perth, Australia. Crawley: Australian Center for Geomechanics; 2008. p. 3–15.

[27] Fairhurst C. Why rock mechanics and rock engineering? 17th ISRM Online Lecture [Internet]. 2017 Apr 27 [cited 2017 Jul 4]. Available from: https://www.isrm.net/gca/?id=1309.

[28] Pierce M, Cundall P, Potyondy D, Mas Ivars D. A synthetic rock mass model for jointed rock. In: Eberhardt E, Stead D, Morrison T, editors Rock mechanics: Meeting society’s challenges and demands. Volume 1: Fundamentals, new technologies & new ideas. London: Taylor & Francis Group; 2007. p. 341–9.

[29] Potyondy DO. The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions. Geosys Eng 2015;18(1):1–28 链接1

[30] La Pointe P. It’s the cracks that matter: DFN modeling of everything rock [presentation]. In: The 46th US Rock Mechanics/Geomechanics Symposium; 2012 Jun 22−28; Chicago, IL, USA; 2012.

[31] Garza-Cruz TV, Pierce M, Kaiser PK. Use of 3DEC to study spalling and deformation associated with tunnelling at depth. In: Hudyma M, Potvin Y , editors Deep mining 2014: Proceedings of the Seventh International Conference on Deep and High Stress Mining; 2014 Sep 16−18; Sudbury, ON, Canada. Crawley: Australian Center for Geomechanics; 2014. p. 421–34.

[32] Pierce ME. Forecasting the vulnerability of deep extraction level excavations to draw-induced cave loads. Engineering 2017. In press.

[33] Starfield AM, Cundall, PA. Towards a methodology for rock mechanics modelling. Int J Rock Mech Min 1988;25(3):99–106.

[34] Holling CS, edtor. Adaptive environmental assessment and management. Chichester: John Wiley & Sons; 1978.

[35] Hooke’s law [Internet]. [cited 2017 Jul 4]. Available from: https://en.wikipedia.org/wiki/Hooke%27s_law.

[36] Nadai A. Theory of flow and fracture of solids (volume 1). New York: McGraw-Hill; 1950.

[37] Sakurai S. Field measurements and back analysis in rock engineering. 7th ISRM Online Lecture [Internet]. 2014 Nov 28 [cited 2017 Aug 21]. Available from: http://www.isrm.net/gca/?id=1171.

[38] Dehkhoda S, Fairhurst C. Rapid excavation and tunneling techniques. Hydraul Fract J 2017;4(1):101–8.

[39] Lynch AJ, Rowland CA. The history of grinding. Englewood: Society for Mining, Metallurgy, and Exploration; 2005.

[40] Von Rittinger RP. Lehrbuch der aufbereitungskunde. Berlin: Ernst and Korn; 1867. German.

[41] Kick F. Das gesetz der proportionalen widerstande und seine anwendung. Leipzig: Arthur Felix Verlag; 1885. German.

[42] Bond FC. The third theory of comminution. Trans AIME 1952;193:484–94.

[43] Bond FC. Crushing and grinding calculations, Part I and Part II. Br Chem Eng 1961;6:378–85,543–8.

[44] Cook NGW, Joughin NC. Rock fragmentation by mechanical, chemical and thermal methods. In: Proceedings of the 6th International Mining Congress; 1970 Jun 1−7; Madrid, Spain; 1970.

[45] Fairhurst C, Brown ET, Detournay E, de Marsily G, Nikolaevshiy V, Pearson JRA, et al.Underground nuclear testing in French Polynesia: Stability and hydrology issues. A report of the International Geomechanical Commission. Paris: Documentation Franc?aise; 1999. Available from: https://conservancy.umn.edu/handle/11299/162862.

[46] “Innovation—mining more for less”, on the theme of innovation; excerpts from Ian Smith’s speech on 30 October 2013 [Internet].2013 Nov 18 [cited 2017 Jul 4]. Available from: https://ceecthefuture.org/comminution-2/innovation-mining-less/.

[47] Anon. Robbins celebrates 60 years of achievement [Internet]. Phoenix: TunnelTalk; 2012 Oct [cited 2017 Jul 4]. Available from: https://www.tunneltalk.com/Accolades-Awards-Oct12-Robbins-celebrates-60-years-of-TBM-achievement.php.

[48] Chitombo G, Trueman R. Long round drilling—State-of-the-art. AMIRA P475-Scoping Study. Brisbane: CRC for Mining Technology and Equipment, Julius Kruttschnitt Mineral Research Center; 1997.

[49] Furtney JK, Cundall PA, Chitombo GP. Developments in numerical modeling of blast induced rock fragmentation: Updates from the HSBM project. In: Sanchidrián JA, editor Rock fragmentation by blasting: Proceedings of the 9th Int. Symp. on Rock Fragmentation by Blasting—Fragblast 9; 2009 Sep 13−17; Granada, Spain. London: Taylor & Francis Group; 2009. p. 335–42.

[50] Fairhurst C. Some possibilities and limitations of rotary drilling in hard rocks. Trans Inst Min Eng 1955;115:85–103.

相关研究