期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第4期 doi: 10.1016/J.ENG.2017.04.023

风机捕集能量和降低负荷使用的先进控制方法

Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA

录用日期: 2017-02-24 发布日期: 2017-08-30

下一篇 上一篇

摘要

本文报道了风机控制领域最近才出现的一些新方法的调查研究结果。最近数年里,在时变不确定的紊乱风场中优化能量捕集效率和降低各个部件负荷的多元控制方法已经被广泛地研究。我们将相关的研究工作分为三类:风机建模和风机动力学研究、风机的主动控制和风机的被动控制。关于风机动力学研究,我们讨论了物理模型的建立,并且给出了空气弹性变形的分析工具。关于主动控制,我们审查了节距控制、扭矩控制和偏航控制等策略,包括相关的理论建立以及针对不同目的的应用情况。我们的研究主要关注风机叶片节距控制,节距控制被认为是在维持能量捕获性能的同时降低负荷的关键要素。关于被动控制,我们研究了调谐质量阻尼器、智能转子和Microtabs等技术。另外我们也提出了未来的一些研究方向。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Ginley DS, Cahen D, editors. Fundamentals of materials for energy and environmental sustainability. Cambridge: Cambridge University Press; 2012.

[ 2 ] Beiter P, Tian T. 2015 Renewable energy data book. Report. Washington D.C.: US Department of Energy; 2016 Nov.

[ 3 ] Pao LY, Johnson KE. A tutorial on the dynamics and control of wind turbines and wind farms. In: Proceedings of the 2009 American Control Conference; 2009 Jun 10–12; St. Louis, MO, USA. Piscataway: IEEE Press; 2009. p. 2076–89 链接1

[ 4 ] Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. Report. Golden: National Renewable Energy Laboratory; 2009 Feb. Report No.: NREL/TP-500-38060.

[ 5 ] Namik H, Stol K. Disturbance accommodating control of floating offshore wind turbines. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 Jan 5–8; Orlando, FL, USA. Reston: AIAA; 2009. p. 483 链接1

[ 6 ] Pao LY, Johnson KE. Control of wind turbines. IEEE Control Systems 2011;31(2):44–62 链接1

[ 7 ] Wright AD. Modern control design for flexible wind turbines. Report. Golden: National Renewable Energy Laboratory; 2004 Jul. Report No.: NREL/TP-500-35816.

[ 8 ] Wright AD, Balas MJ. Design of controls to attenuate loads in the controls advanced research turbine. J Sol Energy Eng 2004;126(4):1083–91 链接1

[ 9 ] Stol KA, Zhao W, Wright AD. Individual blade pitch control for the controls advanced research turbine (CART). J Sol Energy Eng 2006;128(4):498–505 链接1

[10] Wright A, Fingersh L, Stol K. Designing and testing controls to mitigate tower dynamic loads in the controls advanced research turbine. In: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit; 2007 Jan 8–11; Reno, NV, USA. Reston: AIAA; 2007. p. 1021 链接1

[11] Jonkman JM, Buhl ML Jr. FAST user´s guide. Report. Golden: National Renewable Energy Laboratory; 2005 Aug. Report No.: NREL/EL-500-38230.

[12] Bossanyi E. GH Bladed theory manual. Bristol: Garrad Hassan & Partners Ltd; 2011.

[13] Larsen TJ, Hansen AM. How 2 HAWC2, the user´s manual. Roskilde: Ris? National Laboratory; 2007 Dec.

[14] Øye S. FLEX4 simulation of wind turbine dynamics. In: Proceedings of the 28th Meeting of Experts on State of the Art of Aerolastic Codes for Wind Turbine Calculation; 1996 Apr 11–12; Lyngby, Denmark. Paris: International Energy Agency; 1996. p. 71–7.

[15] Moriarty PJ, Hansen AC. AeroDyn theory manual. Report. Golden: National Renewable Energy Laboratory; 2005 Jan. Report No.: NREL/TP-500-36881.

[16] Miller R. Helicopter control and stability in hovering flight. J Aeronaut Sci 1948;15(8):453–72 链接1

[17] Bir G. Multiblade coordinate transformation and its application to wind turbine analysis. Report. Golden: National Renewable Energy Laboratory; 2008 Jan. Report No.: NREL/CP-500-42553.

[18] Laks J, Pao L, Wright A, Kelley N, Jonkman B. The use of preview wind measurements for blade pitch control. Mechatronics 2011;21(4):668–81 链接1

[19] Yuan Y, Chen X, Tang J. Disturbance observer based pitch control of wind turbines for disturbance rejection. In: Proceedings of the SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring. 2016 March 20–24; Las Vegas, USA. Bellingham: SPIE; 2016. p. 980609.

[20] Frost SA, Balas MJ, Wright AD. Direct adaptive control of a utility-scale wind turbine for speed regulation. Int J Robust Nonlinear Control 2009;19(1):59–71 链接1

[21] Johnson C. Theory of disturbance-accommodating controllers. Contr Dyn Syst 1976;12:387–489 链接1

[22] Johnson C. Disturbance-accommodating control—Overview of the subject. J Interdiscipl Model Simulat 1980;3(1):1–29.

[23] Johnson C. Discrete-time disturbance-accommodating control theory with applications to missile digital control. J Guid Control Dyn 1981;4(2):116–25 链接1

[24] Johnson C. Disturbance-accommodating control—An overview. In: Proceedings of the 1986 American Control Conference; 1986 Jun 18–20; Seattle, USA. Piscataway: IEEE Press; 2009. p. 526–36.

[25] Kendall L, Balas MJ, Lee Y, Fingersh L. Application of proportional-integral and disturbance accommodating control to variable speed variable pitch horizontal axis wind turbines. Wind Eng 1997;21(1):21–38.

[26] Balas MJ, Lee YJ, Kendall L. D isturbance tracking control theory with application to horizontal axis wind turbines. In: Proceedings of the 1998 ASME Wind Energy Symposium; 1998 Jan 12–15; Reno, NV, USA. Reston: AIAA; 1998. p. 95–9 链接1

[27] Stol K, Rigney B, Balas M. Disturbance accommodating control of a variable-speed turbine using a symbolic dynamics structural model. In: Proceeding of the 2000 ASME Wind Energy Symposium; 2000 Jan 10–13; Reno, NV, USA. Reston: AIAA; 2000. p. 84 链接1

[28] Stol KA, Balas MJ. Periodic disturbance accommodating control for blade load mitigation in wind turbines. J Sol Energy Eng 2003;125(4):379–85 链接1

[29] Hand MM. Mitigation of wind turbine/vortex interaction using disturbance accommodating control. Report. Golden: National Renewable Energy Laboratory; 2003 Dec. Report No.: NREL/TP-500-35172.

[30] Hand MM, Balas MJ. Blade load mitigation control design for a wind turbine operating in the path of vortices. Wind Energy 2007;10(4):339–55 链接1

[31] Wang N, Wright AD, Balas MJ. Disturbance-accommodating control-based individual blade pitch control design for two-bladed turbines. In: Proceedings of the 34th Wind Energy Symposium, AIAA SciTech Forum; 2016 Jan 4–8; San Diego, CA, USA. Reston: AIAA; 2016. p. 1736.

[32] Wang N, Wright AD, Johnson KE. Independent blade pitch controller design for a three-bladed turbine using disturbance accommodating control. In: Proceedings of the 2016 American Control Conference; 2016 Jul 6–8; Boston, MA, USA. Golden: National Renewable Energy Laboratory; 2016. p. 2301–6 链接1

[33] Wang N, Wright AD, Balas MJ. Disturbance accommodating control design for wind turbines using solvability conditions. J Dyn Syst Meas Control 2017;139(4):041007 链接1

[34] Pace A, Johnson K, Wright A. Preventing wind turbine overspeed in highly turbulent wind events using disturbance accommodating control and light detection and ranging. Wind Energy 2015;18(2):351–68 链接1

[35] Camacho EF, Bordons C. Model predictive control . Berlin: Springer; 1999 链接1

[36] Soliman M, Malik O, Westwick D. Multiple model MIMO predictive control for variable speed variable pitch wind turbines. In: Proceedings of the 2010 American Control Conference; 2010 Jun 30–Jul 2; Baltimore, MD, USA. Piscataway: IEEE Press; 2010. p. 2778–84 链接1

[37] Henriksen LC. Model predictive control of a wind turbine [dissertation]. Lyngby: Technical University of Denmark; 2007.

[38] Schlipf D, Grau P, Raach S, Duraiski R, Trierweiler J, Cheng PW. Comparison of linear and nonlinear model predictive control of wind turbines using LIDAR. In: Proceedings of the 2014 American Control Conference; 2014 Jun 4–6; Portland, OR, USA. Piscataway: IEEE Press; 2014. p. 3742–7 链接1

[39] Kumar A, Stol K. Scheduled model predictive control of a wind turbine. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 Jan 5–8; Orlando, FL, USA. Reston: AIAA; 2009. p. 481 链接1

[40] Schlipf D, Schlipf DJ, Kühn M. Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 2013;16(7):1107–29 链接1

[41] Bottasso C, Croce A, Savini B. Performance comparison of control schemes for variable-speed wind turbines. J Phys Conf Ser 2007;75:012079 链接1

[42] Mirzaei M, Soltani M, Poulsen NK, Niemann HH. Model predictive control of wind turbines using uncertain LIDAR measurements. In: Proceedings of the 2013 American Control Conference; 2013 Jun 17–19; Washington D.C., USA. Piscataway: IEEE Press; 2013. p. 2235–40 链接1

[43] Korber A, King R. Model predictive control for wind turbines. In: Proceedings of the European Wind Energy Conference ; 2010 Apr 20–23; Warsaw, Poland. Brussels: WindEurope; 2010.

[44] Simley E, Pao LY, Frehlich R, Jonkman B, Kelley N. Analysis of wind speed measurements using continuous wave LIDAR for wind turbine control. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2011. p. 263 链接1

[45] Laks J, Pao LY, Simley E, Wright A, Kelley N, Jonkman B. Model predictive control using preview measurements from LIDAR. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2011. p. 813 链接1

[46] Santos RA. Damage mitigating control for wind turbines [dissertation]. Boulder: University of Colorado at Boulder; 2007.

[47] Odgaaard PF, Knudsen T, Overgaard A, Steffensen H, J?rgensen M. Importance of dynamic inflow in model predictive control of wind turbines. IFAC-PapersOnLine 2015;48(30):90–5 链接1

[48] Spencer MD, Stol KA, Unsworth CP, Cater JE, Norris SE. Model predictive control of a wind turbine using short-term wind field predictions. Wind Energy 2013;16(3):417–34 链接1

[49] Jain A, Schildbach G, Fagiano L, Morari M. On the design and tuning of linear model predictive control for wind turbines. Renew Energy 2015;80:664–73 链接1

[50] Odgaard PF, Larsen LF, Wisniewski R, Hovgaard TG. On using Pareto optimality to tune a linear model predictive controller for wind turbines. Renew Energy 2016;87(Pt 2):884–91 链接1

[51] Lescher F, Zhao JY, Martinez A. Multiobjective H2/H∞ control of a pitch regulated wind turbine for mechanical load reduction. Renew Energy Power Quality J 2006;1:100–5 链接1

[52] Sloth C, Esbensen T, Niss MO, Stoustrup J, Odgaard PF. Robust LMI-based control of wind turbines with parametric uncertainties. In: Proceedings of the IEEE International Conference on Control Applications & Intelligent Control (2009); 2009 Jul 8–10; St. Petersburg, Russia. Piscataway: IEEE Press; 2009. p. 776–81 链接1

[53] De Corcuera AD, Pujana-Arrese A, Ezquerra JM, Segurola E, Landaluze J. H∞ based control for load mitigation in wind turbines. Energies 2012;5(4):938–67 链接1

[54] Vali M, van Wingerden JW, Kyhn M. Optimal multivariable individual pitch control for load reduction of large wind turbines. In: Proceedings of the 2016 American Control Conference; 2016 Jul 6–8; Boston, MA, USA. Piscataway: IEEE Press; 2016. p. 3163–9 链接1

[55] Ozdemir AA, Seiler PJ, Balas GJ. Performance of disturbance augmented control design in turbulent wind conditions. Mechatronics 2011;21(4):634–44 链接1

[56] Laks J, Pao L, Wright A. Combined feedforward/feedback control of wind turbines to reduce blade flap bending moments. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 January 5–8; Orlando, FL, USA. Reston: AIAA; 2009. p. 687 链接1

[57] Wang N, Johnson KE. Combined LIDAR-based feedforward and feedback controllers for wind turbines with tower and blade damping. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2011 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2011. p. 814 链接1

[58] Van der Hooft E, Van Engelen T. Estimated wind speed feed forward control for wind turbine operation optimization. In: Proceedings of the European Wind Energy Conference; 2004 Nov 22 – 25; London, UK. Petten: Energy Research Centre of the Netherlands; 2004. p. 126.

[59] Selvam K, Kanev S, van Wingerden JW, van Engelen T, Verhaegen M. Feedback–feedforward individual pitch control for wind turbine load reduction. Int J Robust Nonlinear Control 2009;19(1):72–91 链接1

[60] Laks J, Pao LY, Wright A, Kelley N, Jonkman B. Blade pitch control with preview wind measurements. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2010 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2010. p. 251 链接1

[61] Dunne F, Pao LY, Wright AD, Jonkman B, Kelley N. Adding feedforward blade pitch control to standard feedback controllers for load mitigation in wind turbines. Mechatronics 2011;21(4):682–90 链接1

[62] Wang N, Johnson KE, Wright AD. FX-RLS-based feedforward control for LIDAR-enabled wind turbine load mitigation. IEEE Trans Contr Syst Technol 2012;20(5):1212–22 链接1

[63] Simley E, Pao L. Reducing LIDAR wind speed measurement error with optimal filtering. In: Proceedings of the 2013 American Control Conference; 2013 Jun 17–19; Washington, DC , USA. Piscataway: IEEE Press; 2013. p. 621–7 链接1

[64] Scholbrock A, Fleming P, Fingersh L, Wright A, Schlipf D, Belen F. Field testing LIDAR based feedforward controls on the NREL controls advanced research turbine. In: Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2013 Jan 7–10; Grapevine, TX, USA. Reston: AIAA; 2013. p. 0818 链接1

[65] Fleming P, Scholbrock A, Jehu A, Davoust S, Osler E, Wright A, et al.Field-test results using a nacelle-mounted LIDAR for improving wind turbine power capture by reducing yaw misalignment. J Phys Conf Ser 2014;524:012002 链接1

[66] Johnson KE. Adaptive torque control of variable speed wind turbines. Report. Golden: National Renewable Energy Laboratory; 2004 Aug. Report No.: NREL/TP-500-36265.

[67] Johnson KE, Pao LY, Balas MJ, Kulkami V, Fingersh LJ. Stability analysis of an adaptive torque controller for variable speed wind turbines. In: Proceedings of the 43rd IEEE Conference on Decision and Control; 2004 Dec 14–17; Nassau, Bahamas. Piscataway: IEEE Press; 2005. p. 4087–94.

[68] Magar KT, Balas MJ, Frost SA. Direct adaptive torque control for maximizing the power captured by wind turbine in partial loading condition. Wind Energy 2015;19(5):911–22 链接1

[69] Beltran B, Ahmed-Ali T, Benbouzid MEH. High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Ind Electron 2009;56(9):3314–21 链接1

[70] Boukhezzar B, Lupu L, Siguerdidjane H, Hand M. Multivariable control strategy for variable speed, variable pitch wind turbines. Renew Energy 2007;32(8):1273–87 链接1

[71] Ekelund T. Yaw control for reduction of structural dynamic loads in wind turbines. J Wind Eng Ind Aerodyn 2000;85(3):241–62 链接1

[72] Gebraad P, Teeuwisse F, Wingerden J, Fleming PA, Ruben S, Marden J, et al.Wind plant power optimization through yaw control using a parametric model for wake effects—A CFD simulation study. Wind Energy 2016;19(1):95–114 链接1

[73] Marathe N, Swift A, Hirth B, Walker R, Schroeder J. Characterizing power performance and wake of a wind turbine under yaw and blade pitch. Wind Energy 2015;19(5):963–78 链接1

[74] Fleming PA, Ning A, Gebraad PM, Dykes K. Wind plant system engineering through optimization of layout and yaw control. Wind Energy 2016;19(2):329–44 链接1

[75] Gebraad P, Thomas JJ, Ning A, Fleming P, Dykes K. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control. Wind Energy 2016;20(1):97–107 链接1

[76] Murtagh P, Ghosh A, Basu B, Broderick B. Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence. Wind Energy 2008;11(4):305–17 链接1

[77] Lackner MA, Rotea MA. Passive structural control of offshore wind turbines. Wind Energy 2011;14(3):373–88 链接1

[78] Van Wingerden JW, Hulskamp AW, Barlas T, Marrant B, van Kuik G, Molenaar D, et al.On the proof of concept of a “smart” wind turbine rotor blade for load alleviation. Wind Energy 2008;11(3):265–80 链接1

[79] Yen D, van Dam C, Smith R, Collins S. Active load control for wind turbine blades using MEM translational tabs. In: Proceedings of the 20th 2011 ASME Wind Energy Symposium; 2001 Jan 11–14; Reno, NV, USA. Reston: AIAA; 2001. p. 0031 链接1

[80] Macquart T, Maheri A, Busawon K. Microtab dynamic modelling for wind turbine blade load rejection. Renew Energy 2014;64:144–52 链接1

[81] Nakafuji DY, van Dam CP, Michel J, Morrison P. Load control for turbine blades: A non-traditional microtab approach. In: Proceedings of the 2002 ASME Wind Energy Symposium; 2002 Jan 14–17; Reno, NV, USA. Reston: AIAA; 2002. p. 321–30 链接1

[82] Kumar AA, Bossanyi EA, Scholbrock AK, Fleming P, Boquet M, Krishnamurthy R. Field testing of LIDAR assisted feedforward control algorithms for improved speed control and fatigue load reduction on a 600 kW wind turbine. Report. Golden: National Renewable Energy Laboratory; 2015 Nov. Report No.: NREL/CP-5000-65062.

相关研究