期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.018

CMIP5模式在东亚-西北太平洋地区的鲁棒性分析

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

录用日期: 2017-09-13 发布日期: 2017-10-31

下一篇 上一篇

摘要

耦合模式比较计划(CMIP)是气候模拟研究领域的重要国际合作平台,服务于气候模式比较、气候变率、气候预测和气候预估。改善气候模式在东亚和西北太平洋地区的模拟性能,一直是气候模式领域面临的一项挑战。针对第五次耦合模式比较计划(CMIP5)中的气候模式,本文提供了综合鲁棒性分析。本文从气候平均态、年际变率、中上新世(MP)和过去千年的历史气候变化、气候预估的角度,对CMIP5 模式的优缺点进行了评估。另外,还评估了区域气候模式相对于驱动其运行的全球气候模式带来的模拟增值。从CMIP3 到CMIP5,模式的可信度明显提高,气候平均态、年际变率和过去气候变化的模拟情况有所改善,但在CMIP5 模式中,一些之前已知的偏差,如西北太平洋副热带高压脊线的位置和与之相关的降水偏差等,仍然很明显。对于年际振幅的模拟也存在明显的缺陷,如厄尔尼诺- 南方涛动(ENSO)与季风的关系。在模拟平均气候态和年际变率时,耦合模式的表现通常优于单独大气模式。多模式比较的结果表明,尽管在克劳修斯- 克拉珀龙方程约束下模式预估的降水一致增加,但未来气候预估仍存在明显的不确定性。对东亚- 西北太平洋地区的动力降尺度预估而言,区域海洋- 大气耦合模式是一个较好的选择。

图片

图1

图2

图3

参考文献

[ 1 ] Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. B Am Meteorol Soc 2012;93(4):485–98 链接1

[ 2 ] Zhou T, Zou L, Wu B, Jin C, Song F, Chen X, et al.Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. J Meteorol Res 2014;28(5):762–79 链接1

[ 3 ] Jiang D, Tian Z, Lang X. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. Int J Climatol 2016;36(3):1114–33 链接1

[ 4 ] Song F, Zhou T. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J Clim 2014;27(4):1679–97 链接1

[ 5 ] Song F, Zhou T, Wang L. Two modes of the Silk Road pattern and their interannual variability simulated by LASG/IAP AGCM SAMIL2.0. Adv Atmos Sci 2013;30(3):908–21 链接1

[ 6 ] Song F, Zhou T. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? J Clim 2014;27(23):8761–77 链接1

[ 7 ] Huang DQ, Zhu J, Zhang YC, Huang AN. Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models. J Geophys Res – Atmos 2013;118(16):9035–47 链接1

[ 8 ] He C, Zhou T. The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5-AMIP models. Clim Dynam 2014;43(9–10):2455–69 链接1

[ 9 ] Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, et al.The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dynam 2013;41(9–10):2711–44 链接1

[10] Seo KH, Ok J, Son JH, Cha DH. Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J Clim 2013;26(19):7662–75 链接1

[11] Qu X, Huang G, Zhou W. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theor Appl Climatol 2014;117(1–2):123–31 链接1

[12] Kitoh A, Uchiyama T. Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J Meteorol Soc Jpn 2006;84(2):247–58 链接1

[13] Zou L, Zhou T. Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models. Adv Atmos Sci 2015;32(6):794–806 链接1

[14] Inoue T, Ueda H. Evaluation for the seasonal evolution of the summer monsoon over the Asian and western North Pacific sector in the WCRP CMIP3 multi-model experiments. J Meteorol Soc Jpn 2009;87(3):539–60 链接1

[15] Park JY, Jhun JG, Yim SY, Kim WM. Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/El Ni?o-Southern Oscillation connections. J Geophys Res–Atmos 2010;115(D21):D21129 链接1

[16] He C, Zhou T, Zou L, Zhang L. Two interannual variability modes of the Northwestern Pacific subtropical anticyclone in boreal summer. Sci China Earth Sci 2013;56(7):1254–65 链接1

[17] Yun KS, Yeh SW, Ha KJ. Covariability of western tropical Pacific-North Pacific atmospheric circulation during summer. Sci Rep 2015;5:16980 链接1

[18] Wang B, Wu R, Fu X. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 2000;13(9):1517–36 链接1

[19] Wang B, Wu R, Li T. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J Clim 2003;16(8):1195–211 链接1

[20] Wu B, Zhou T. Relationships between ENSO and the East Asian–western North Pacific monsoon: Observations versus 18 CMIP5 models. Clim Dynam 2016;46(3–4):729–43 链接1

[21] Wang B, Wu Z, Chang CP, Liu J, Li J, Zhou T. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J Clim 2010;23(6):1495–512 链接1

[22] Zhang R, Sumi A, Kimoto M. A diagnostic study of the impact of El Ni?o on the precipitation in China. Adv Atmos Sci 1999;16(2):229–41 链接1

[23] Wang B, Wu RG, Lukas R, An SI. A possible mechanism for ENSO turnabout. In: IAP/Academia Sinica, editor Dynamics of atmospheric general circulation and climate. Beijing: China Meteorological Press; 2001. p. 552–78.

[24] Wu B, Li T, Zhou T. Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Ni?o and La Ni?o. J Clim 2010;23(18):4807–22 链接1

[25] Wu B, Li T, Zhou T. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Ni?o decaying summer. J Clim 2010;23(11):2974–86 链接1

[26] Wu B, Zhou T, Li T. Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 2009;22(11):2992–3005 链接1

[27] Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, et al.Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Ni?o. J Clim 2009;22(3):730–47 链接1

[28] Kamae Y, Ueda H, Kitoh A. Hadley and Walker circulations in the mid-Pliocene warm period simulated by an atmospheric general circulation model. J Meteorol Soc Jpn 2011;89(5):475–93 链接1

[29] Sun Y, Ramstein G, Contoux C, Zhou T. A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene). Clim Past 2013;9(4):1613–27 链接1

[30] Seo KH, Frierson DMW, Son JH. A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys Res Lett 2014;41(14):5251–8 链接1

[31] Jiang D, Wang H, Ding Z, Lang X, Drange H. Modeling the middle Pliocene climate with a global atmospheric general circulation model. J Geophys Res –Atmos 2005;110(D14):D14107 链接1

[32] Zhang R, Yan Q, Zhang ZS, Jiang D, Otto-Bliesner BL, Haywood AM, et al.Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Clim Past 2013;9(5):2085–99 链接1

[33] Sun Y, Zhou T, Ramstein G, Contoux C, Zhang Z. Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Clim Dynam 2016;46(5–6):1437–57. Erratum in: Clim Dynam 2016;46(5–6):2027 链接1

[34] Man W, Zhou T, Jungclaus JH. Simulation of the East Asian summer monsoon during the last millennium with the MPI earth system model. J Clim 2012;25(22):7852–66 链接1

[35] Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, et al.A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 2008;322(5903):940–2 链接1

[36] Man W, Zhou T. Regional-scale surface air temperature and East Asian summer monsoon changes during the last millennium simulated by the FGOALS-gl climate system model. Adv Atmos Sci 2014;31(4):765–78 链接1

[37] Man W, Zhou T. Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium. Chin Sci Bull 2014;59(31):4123–9 链接1

[38] Cui X, Gao Y, Sun J. The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Adv Atmos Sci 2014;31(6):1245–55 链接1

[39] Miao J, Wang T, Zhu Y, Min J, Wang H, Guo D. Response of the East Asian winter monsoon to strong tropical volcanic eruptions. J Clim 2016;29(13):5041–57 链接1

[40] Min SK, Park EH, Kwon WT. Future projections of East Asian climate change from multi-AOGCM ensembles of IPCC SRES scenario simulations. J Meteorol Soc Jpn 2004;82(4):1187–211 链接1

[41] Sun Y, Ding Y. A projection of future changes in summer precipitation and monsoon in East Asia. Sci China Earth Sci 2010;53(2):284–300 链接1

[42] Li H, Feng L, Zhou T. Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part I: Precipitation. Adv Atmos Sci 2011;28(2):433–47 链接1

[43] Zou L, Zhou T. Near future (2016–40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv Atmos Sci 2013;30(3):806–18 链接1

[44] Xin X, Zhang L, Zhang J, Wu T, Fang Y. Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. J Meteor Soc Jpn 2013;91(4):413–29 链接1

[45] Christensen JH, Krishna Kumar K, Aldrian E, , An SI, Cavalcanti IFA, de Castro M,et al. Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al., editors Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Changes. New York: Cambridge University Press; 2013. p. 1217–308.

[46] Zhou B, Xu Y, Shi Y. Present and future connection of Asian-Pacific Oscillation to large-scale atmospheric circulations and East Asian rainfall: Results of CMIP5. Clim Dynam 2017. In press 链接1

[47] Jiang DB, Tian ZP. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin Sci Bull 2013;58(12):1427–35 链接1

[48] Wang B, Yim SY, Lee JY, Liu J, Ha KJ. Future change of Asian-Australian monsoon under RCP4.5 anthropogenic warming scenario. Clim Dynam 2014;42(1–2):83–100 链接1

[49] Lee JY, Wang B. Future change of global monsoon in the CMIP5. Clim Dynam 2014;42(1–2):101–19 链接1

[50] Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T. Monsoons in a changing world: A regional perspective in a global context. J Geophys Res–Atmos 2013;118(8):3053–65 链接1

[51] He C, Zhou T, Lin A, Wu B, Gu D, Li C, et al.Enhanced or weakened western North Pacific subtropical high under global warming? Sci Rep 2015;5:16771 链接1

[52] He C, Zhou T. Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean-tropical western Pacific SST gradient. J Clim 2015;28(1):365–80 链接1

[53] Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, et al.Projected future changes in the Asian monsoon: A comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 2014;92(3):207–25 链接1

[54] Ren Y, Zhou B, Song L, Xiao Y. Interannual variability of western North Pacific subtropical high, East Asian jet and East Asian summer precipitation: CMIP5 simulation and projection. Quatern Int 2017;440(Part B):64–70.

[55] Li H, Feng L, Zhou T. Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv Atmos Sci 2011;28(2):448–63 链接1

[56] Chen HP. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin Sci Bull 2013;58(12):1462–72 链接1

[57] Wu J, Zhou BT, Xu Y. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection. Chin J Geophys 2015;58(5): 461–73 链接1

[58] Wang Y, Zhou B, Qin D, Wu J, Gao R, Song L. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv Atmos Sci 2017;34(3):289–305 链接1

[59] Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, et al.Rapid increase in the risk of extreme summer heat in eastern China. Nat Clim Chang 2014;4(12):1082–5 链接1

[60] Zhou B, Wen QH, Xu Y, Song L, Zhang X. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 2014;27(17):6591–611 链接1

[61] Zhou T, Hong T. Projected changes of palmer drought severity index under an RCP8.5 scenario. Atmos Ocean Sci Lett 2013;6(5):273–8 链接1

[62] Chen X, Zhou T, Guo Z. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci China Earth Sci 2014;57(6):1363–73 链接1

[63] Van Pelt SC, Beersma JJ, Buishand TA, van den Hurk BJJM, Schellekens J. Uncertainty in the future change of extreme precipitation over the Rhine basin: The role of internal climate variability. Clim Dynam 2015;44(7–8):1789–800 链接1

[64] Turner AG, Slingo JM. Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos Sci Lett 2009;10(3):152–8 链接1

[65] Chen X, Zhou T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys Res Lett 2015;42(21):9433–9 链接1

[66] Oh SG, Park JH, Lee SH, Suh MS. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J Geophys Res–Atmos 2014;119(6):2913–27 链接1

[67] Park C, Min SK, Lee D, Cha DH, Suh MS, Kang HS, et al.Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dynam 2016;46(7–8):2469–86 链接1

[68] Niu X, Wang S, Tang J, Lee DK, Gutowski W, Dairaku K, et al.Projection of Indian summer monsoon climate in 2041–2060 by multiregional and global climate models. J Geophys Res–Atmos 2015;120(5):1776–93 链接1

[69] Yao S, Zhang Y. Simulation of China summer precipitation using a regional air-sea coupled model. Acta Meteorol Sin 2010;24(2):203–14.

[70] Li T, Zhou G. Preliminary results of a regional air-sea coupled model over East Asia. Chin Sci Bull 2010;55(21):2295–305 链接1

[71] Fang Y, Zhang Y. Impacts of regional air-sea coupling on the simulation of summer precipitation over eastern China in the RIEMS model. Chin J Atmos Sci 2011;35(1):16–28. Chinese.

[72] Wang HJ, Sun JQ, Chen HP, Zhu YL, Zhang Y, Jiang DB, et al.Extreme climate in China: Facts, simulation and projection. Meteorol Z 2012;21(3):279–304 链接1

[73] Zou L, Zhou T. Development and evaluation of a regional ocean-atmosphere coupled model with focus on the western North Pacific summer monsoon simulation: Impacts of different atmospheric components. Sci China Earth Sci 2012;55(5):802–15 链接1

[74] Zou L, Zhou T. Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? J Clim 2013;26(7):2353–67 链接1

[75] Zou L, Zhou T. Simulation of the western North Pacific summer monsoon by regional ocean-atmosphere coupled model: Impacts of oceanic components. Chin Sci Bull 2014;59(7):662–73 链接1

[76] Cha DH, Jin CS, Moon JH, Lee DK. Improvement of regional climate simulation of East Asian summer monsoon by coupled air-sea interaction and large-scale nudging. Int J Climatol 2016;36(1):334–45 链接1

[77] Ham S, Yoshimura K, Li H. Historical dynamical downscaling for East Asia with the atmosphere and ocean coupled regional model. J Meteorol Soc Jpn 2016;94A:199–208 链接1

[78] Zou L, Zhou T, Peng D. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean atmosphere coupled model to stand-alone RCM simulations. J Geophys Res– Atmos 2016;121(4):1442–58 链接1

[79] Zou L, Zhou T. Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM. J Geophys Res– Atmos 2016;121(6):2691–704 链接1

相关研究