期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.020

面向精密增材制造的大范围柔性伺服系统

a State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Tsinghua University, Beijing 100084, China
b Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China
c Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
d Key Laboratory of High-Efficiency and Clean Mechanical Manufacturing, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
e Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland

录用日期: 2017-07-27 发布日期: 2017-10-31

下一篇 上一篇

摘要

本文主要介绍可用于微立体光固化(MSL)工艺的基于分布柔度簧片的大范围柔性纳米伺服系统的设计、开发和控制。作为这一高精度工艺的使能技术,本文设计了一种兼具毫米级运动行程和纳米级运动精度的紧凑型台式柔性纳米运动系统。由于在运行中无需装配和维护,这种柔性运动系统非常适合苛刻的操作条件。从机械设计的角度来看,镜像对称布局和适当的冗余约束对于抑制寄生运动至关重要。本文对此系统进行了详细的有限元分析(FEA),分析结果表面系统具有满意的机械特征。通过纳米运动系统的动力学模型辨识,本文设计了实时控制策略,并将其应用在一体加工的原型系统中。实验验证了面向MSL 工艺过程的轨迹跟踪性能。所提出的纳米伺服运动系统具有毫米级的工作范围,圆轨迹跟踪误差约为80 nm(均方根值)。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Ikuta K, Hirowatari K. Real three dimensional micro fabrication using stereo lithography and metal molding. In: Proceedings of the IEEE International Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems; 1993 Feb 7–10; Fort Lauderdale, FL, USA. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.; 1993. p. 42–7 链接1

[ 2 ] Ikuta K, Maruo S, Kojoma S. New micro stereo lithography for freely movable 3D micro structure-super IH process with submicron resolution. In: Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems; 1998 Jan 25–29; Heidelberg, Germany. Piscataway: The Institute of Electrical and Electronics Engineers, Inc., 1998. p. 290–5 链接1

[ 3 ] Choi JS, Kang HW, Lee IH, Ko TJ, Cho DW. Development of micro-stereolithography technology using a UV lamp and optical fiber. Int J Adv Manuf Tech 2009;41(3–4):281–6 链接1

[ 4 ] Shoji S, Smith N, Kawata S. Photofabrication of a photonic crystal using interference of a UV laser. Proc SPIE 1999;3740:541–4 链接1

[ 5 ] Neumann J, Wieking KS, Kip D. Direct laser writing of surface reliefs in dry, self-developing photopolymer films. Appl Opt 1999;38(25):5418–21 链接1

[ 6 ] Straub M, Ventura M, Gu M. Multiple higher-order stop gaps in infrared polymer photonic crystals. Phys Rev Lett 2003;91(4):043901 链接1

[ 7 ] Bertsch A, Zissi S, Jézéquel JY, Corbel S, André JC. Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsyst Technol 1997;3(2):42–7 链接1

[ 8 ] Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Tech 2013;67(5–8):1721–54 链接1

[ 9 ] Xu G, Zhao W, Tang Y, Lu B. Novel stereolithography system for small size objects. Rapid Prototyping J 2006;12(1):12–7 链接1

[10] Roy NK, Cullinan MA. μ-SLS of metals: Design of the powder spreader, powder bed actuators and optics for the system. In: Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; 2015 Aug 10–12; Austin, TX, USA. Austin: University of Texas at Austin; 2015. p. 134–55.

[11] Awtar S, Parmar G. Design of a large range XY nanopositioning system. J Mech Robot 2013;5(2):021008 链接1

[12] Xu Q. Design and development of a compact flexure-based XY precision positioning system with centimeter range. IEEE Trans Ind Electron 2014;61(2):893–903 链接1

[13] Zhou X, Wang D, Wang J, Chen SC. Precision design and control of a flexure-based roll-to-roll printing system. Precis Eng 2016;45:332–41 链接1

[14] Kang HW, Jeong YS, Lee SJ, Kim KS, Yun WS. Development of a compact micro-stereolithography (MSTL) system using a Blu-ray optical pickup unit. J Micromech Microeng 2012;22(11):115021 链接1

[15] Hao G, Yu J. Design, modelling and analysis of a completely-decoupled XY compliant parallel manipulator. Mech Mach Theory 2016;102:179–95 链接1

[16] Zhang Z, Liu Z, Yan P. Design of a flexure-based XY positioning stage with balanced axial forces on decoupling modules. In: Proceedings of the 6th International Conference on Manipulation, Manufacturing, Measurement on the Nanoscale; 2016 Jul 18–22; Chongqing, China. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.; 2016. p. 83–8 链接1

[17] Yu J, Xie Y, Li Z, Hao G. Design and experimental testing of an improved large-range decoupled XY compliant parallel micromanipulator. J Mech Robot 2015;7(4):044503 链接1

[18] Zhang Z, Wang P, Yan P, Guan Y. A beam flexure-based nanopositioning stage supporting laser direct-write nanofabrication. Sci China Phys Mech Astron 2016;59(8):684211 链接1

[19] Awtar S, Slocum AH, Sevincer E. Characteristics of beam-based flexure modules. J Mech Design 2007;129(6):625–39 链接1

相关研究