期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第6期 doi: 10.1016/j.eng.2017.11.008

基于气动模型的大跨度桥梁抖振与颤振的比较评估

a Research Training Group 1462, Bauhaus-University Weimar, Weimar 99423, Germany
b Chair of Modeling and Simulation of Structures, Bauhaus-University Weimar, Weimar 99423, Germany

收稿日期: 2017-06-15 修回日期: 2017-08-21 录用日期: 2017-11-30 发布日期: 2017-12-30

下一篇 上一篇

摘要

风致振动通常代表了大跨度桥梁设计的主要标准。桥梁空气动力学中的气动力主要基于准定常和线性非定常理论。本文旨在通过比较多跨斜拉桥在临界架设条件下的动力响应,进而推演出不同时域自激力与抖振力的表达式。这类混凝土箱梁桥是用于大型河流交叉口的典型参考对象。本文从模型复杂性的角度进行分析,对比了气动模型中隐含的气动参数,如气动阻尼和气动刚度、抖振力和自激力中的流体记忆、气动非线性和气动耦合等对桥梁响应的影响。选定的模型用于研究一定风速范围内的结果,该风速范围对于考虑两种湍流度情况的施工过程是典型范围。此外,还提出了一种计算包括气动导纳在内的抖振力的简化方法,避免了有理逼近。在层流流动下,也将对根据所选模型计算得到的临界颤振风速进行对比。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Morgenthal G, Yamasaki Y. Behaviour of very long cable-stayed bridges during erection. Proc Inst Civ Eng—Bridge Eng 2010;163(4):213–24. 链接1

[ 2 ] Scanlan RH. The action of flexible bridges under wind, I: Flutter theory. J Sound Vib 1978;60(2):187–99. 链接1

[ 3 ] Scanlan RH. The action of flexible bridges under wind, II: buffeting theory. J Sound Vib 1978;60(2):201–11. 链接1

[ 4 ] Davenport AG. The response of slender, line-like structures to a gusty wind. Proc Inst Civ Eng 1962;23(3):389–408. 链接1

[ 5 ] Diana G, Bruni S, Cigada A, Collina A. Turbulence effect on flutter velocity in long span suspended bridges. J Wind Eng Ind Aerod 1993;48(2–3):329–42. 链接1

[ 6 ] Chen XZ, Kareem A. Advances in modeling of aerodynamic forces on bridge decks. J Eng Mech 2002;128(11):1193–205. 链接1

[ 7 ] Ge YJ, Xiang HF. Computational models and methods for aerodynamic flutter of long-span bridges. J Wind Eng Ind Aerod 2008;96(10–11):1912–24. 链接1

[ 8 ] Morgenthal G, Corriols AS, Bendig B. A GPU-accelerated pseudo-3D vortex method for aerodynamic analysis. J Wind Eng Ind Aerod 2014;125:69–80. 链接1

[ 9 ] Larsen A, Walther JH. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations. J Wind Eng Ind Aerod 1997;67–68:253–65. 链接1

[10] Kovacs I, Svensson HS, Jordet E. Analytical aerodynamic investigation of cable- stayed Helgeland Bridge. J Struct Eng 1992;118(1):147–68. 链接1

[11] Borri C, Costa C. Quasi-steady analysis of a two-dimensional bridge deck element. Comput Struct 2004;82(13–14):993–1006. 链接1

[12] Scanlan RH, B’eliveau JG, Budlong KS. Indicial aerodynamic functions for bridge decks. J Eng Mech 1974;100:657–72. 链接1

[13] Caracoglia L, Jones NP. Time domain vs. frequency domain characterization of aeroelastic forces for bridge deck sections. J Wind Eng Ind Aerod 2003;91 (3):371–402. 链接1

[14] Chen XZ, Matsumoto M, Kareem A. Time domain flutter and buffeting response analysis of bridges. J Eng Mech 2000;126(1):7–16. 链接1

[15] Wilde K, Fujino Y, Masukawa J. Time domain modeling of bridge deck flutter. J Struct Mech Earthquake Eng 1996;13(2):19–30. 链接1

[16] Øiseth O, Rönnquist A, Sigbjörnsson R. Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: a case study. J Wind Eng Ind Aerod 2010;98 (12):730–41. 链接1

[17] Chen XZ, Kareem A. Advanced analysis of coupled buffeting response of bridges: a complex modal decomposition approach. Probabilist Eng Mech 2002;17(2):201–13. 链接1

[18] Chen XZ, Kareem A. Nonlinear response analysis of long-span bridges under turbulent winds. J Wind Eng Ind Aerod 2001;89(14–15):1335–50. 链接1

[19] Diana G, Rocchi D, Argentini T. An experimental validation of a band superposition model of the aerodynamic forces acting on multi-box deck sections. J Wind Eng Ind Aerod 2013;113:40–58. 链接1

[20] Diana G, Resta F, Rocchi D. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain. J Wind Eng Ind Aerod 2008;96 (10–11):1871–84. 链接1

[21] Diana G, Rocchi D, Argentini T, Muggiasca S. Aerodynamic instability of a bridge deck section model: linear and nonlinear approach to force modeling. J Wind Eng Ind Aerod 2010;98(6–7):363–74. 链接1

[22] Wu T, Kareem A. A nonlinear convolution scheme to simulate bridge aerodynamics. Comput Struct 2013;128:259–71. 链接1

[23] Petrini F, Giuliano F, Bontempi F. Comparison of time domain techniques for the evaluation of the response and the stability in long span suspension bridges. Comput Struct 2007;85(11–14):1032–48. 链接1

[24] Salvatori L, Borri C. Frequency- and time-domain methods for the numerical modeling of full-bridge aeroelasticity. Comput Struct 2007;85(11– 14):675–87. 链接1

[25] Lazzari M. Time domain modelling of aeroelastic bridge decks: a comparative study and an application. Int J Numer Meth Eng 2005;62(8):1064–104. 链接1

[26] Wu T, Kareem A. Revisiting convolution scheme in bridge aerodynamics: comparison of step and impulse response functions. J Eng Mech 2014;140 (5):1–13. 链接1

[27] Lazzari M, Vitalini RV, Saetta AV. Aeroelastic forces and dynamic response of long-span bridges. Int J Numer Meth Eng 2004;60(6):1011–48. 链接1

[28] Øiseth O, Rönnquist A, Sigbjörnsson R. Time domain modeling of self-excited aerodynamic forces for cable-supported bridges: a comparative study. Comput Struct 2011;89(13–14):1306–22. 链接1

[29] Wu T, Kareem A. Bridge aerodynamics and aeroelasticity: a comparison of modeling schemes. J Fluid Struct 2013;43:347–70. 链接1

[30] Katsuchi H, Jones NP, Scanlan RH, Akiyama H. Multi-mode flutter and buffeting analysis of the Akashi-Kaikyo Bridge. J Wind Eng Ind Aerod 1998;77– 78:431–41. 链接1

[31] Abbas T, Kavrakov I, Morgenthal G. Methods for flutter stability analysis of long-span bridges: A review. Bridge Eng 2017;170(4):271–310. 链接1

[32] Tubino F. Relationships among aerodynamic admittance functions, flutter derivatives and static coefficients for long-span bridges. J Wind Eng Ind Aerod 2005;93(12):929–50. 链接1

[33] Argentini T, Rocchi D, Muggiasca S, Zasso A. Cross-sectional distributions versus integrated coefficients of flutter derivatives and aerodynamic admittances identified with surface pressure measurement. J Wind Eng Ind Aerod 2012;104–106:152–8. 链接1

[34] Diana G, Bruni S, Cigada A, Zappa E. Complex aerodynamic admittance function role in buffeting response of a bridge deck. J Wind Eng Ind Aerod 2002;90(12–15):2057–72. 链接1

[35] Larose GL. Experimental determination of the aerodynamic admittance of a bridge deck segment. J Fluid Struct 1999;13(7–8):1029–40. 链接1

[36] Chopra AK. Dynamics of structures. 4th ed. London: Pearson; 2011.

[37] Chen ZQ, Han Y, Hua XG, Luo YZ. Investigation on influence factors of buffeting response of bridges and its aeroelastic model verification for Xiaoguan Bridge. Eng Struct 2009;31(2):417–31. 链接1

[38] Chen XZ, Kareem A. Aeroelastic analysis of bridges under multicorrelated winds: integrated state-space approach. J Eng Mech 2001;127(11):1124–34. 链接1

[39] Morgenthal G. Aerodynamic analysis of structures using high-resolution vortex particle methods [dissertation]. Cambridge: University of Cambridge; 2002. 链接1

[40] Scanlan RH. Motion-related body-force functions in two-dimensional low- speed flow. J Fluid Struct 2000;14(1):49–63. 链接1

[41] Ding QS, Zhu LD, Xiang HF. An efficient ergodic simulation of multivariate stochastic processes with spectral representation. Probabilist Eng Mech 2011;26(2):350–6. 链接1

[42] Solari G, Piccardo G. Probabilistic 3D turbulence modeling for gust buffeting of structures. Probabilist Eng Mech 2001;16(1):73–86. 链接1

[43] Ge YJ, Tanaka H. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches. J Wind Eng Ind Aerod 2000;86(2– 3):123–53. 链接1

[44] Larsen A, Walther JH. Discrete vortex simulation of flow around five generic bridge deck sections. J Wind Eng Ind Aerod 1998;72–78:591–602. 链接1

[45] Matsumoto M, Daito Y, Yoshizumi F, Ichikawa Y, Yabutani T. Torsional flutter of bluff bodies. J Wind Eng Ind Aerod 1997;69–71:871–82. 链接1

相关研究