期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第1期 doi: 10.1016/j.eng.2018.02.008

简述图像被动取证技术

a School of Cyber Security, Shanghai Jiao Tong University, Shanghai 200240, China
b School of Information and Communication Technology, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia

收稿日期 :2017-12-08 修回日期 :2017-12-20 录用日期 : 2018-02-15 发布日期 :2018-02-17

下一篇 上一篇

摘要

随着图像编辑和篡改技术越发成熟,数字图像的真实性通常难以从视觉上直接分辨。为了检测数字图像篡改,在过去十年内,已经出现多种数字图像取证技术。其中,主动取证方法需要嵌入额外信息。相比之下,被动取证方法因为其适用场景更广而更加流行,也吸引了学术界和工业界越来越多的研究兴趣。一般而言,被动取证基于以下依据来检测图像伪造:图像采集或存储过程中会在原始图像中遗留某些固有的模式特征,或者在图像存储或编辑过程中会留下某些特定的模式特征。通过分析上述模式特征,可以验证图像的真实性。被动数字取证方法正处于快速发展之中,本文简要回顾其发展,并全面介绍该研究领域的最新进展。根据所追踪痕迹的不同,这些取证方法被分为3 类,即采集痕迹法、存储痕迹法和编辑痕迹法。我们将逐一详解这些方法的取证场景、基本原理和研究现状。此外,我们讨论了当前图像取证方法的主要局限,并指出了该领域一些可能的研究方向和关键问题。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[1]  Peraica A. Image science: Iconology, visual culture, and media aesthetics. Leonardo 2016;49(3):285. 链接1

[2]  Farid H. A survey of image forgery detection. IEEE Signal Proc Mag 2009;26 (2):16–25.

[3]  Zhou G, Lv D. An overview of digital watermarking in image forensics. In: Proceedings of 2011 Fourth International Joint Conference on Computational Sciences and Optimization; 2011 Apr 15–19; Yunnan, China. Washington, DC: IEEE Computer Society; 2011. p. 332–5.

[4]  Farid H. How to detect faked photos. Am Sci 2017;105(2):77–81.

[5]  Birajdar GK, Mankar VH. Digital image forgery detection using passive techniques: A survey. Digital Invest 2013;10(3):226–45. 链接1

[6]  Choi KS, Lam EY, Wong KKY. Source camera identification using footprints from lens aberration. In: Sampat N, DiCarlo JM, Martin RA, editors. Proceedings of SPIE—Electronic Imaging 2006: Digital Photography II; 2006 Jan 16–19; San Jose, CA, USA. Bellingham: International Society for Optics and Photonics; 2006. p. 172–9. 链接1

[7]  Yerushalmy I, Hel-Or H. Digital image forgery detection based on lens and sensor aberration. Int J Comput Vis 2011;92(1):71–91. 链接1

[8]  Lukas J, Fridrich J, Goljan M. Digital camera identification from sensor pattern noise. IEEE Trans Inf Foren Sec 2006;1(2):205–14. 链接1

[9]  Kulkarni N, Mane V. Improvements on sensor noise based on source camera identification using GLCM. In: Proceedings of International Conference on Advances in Science and Technology; 2014 Oct 29–31; Ota, Nigeria. New York: International Journal of Computer Applications; 2015. p. 1–4.

[10]  Sandoval Orozco AL, Arenas González DM, Rosales Corripio J, García Villalba LJ, Hernandez-Castro JC. Source identification for mobile devices, based on wavelet transforms combined with sensor imperfections. Computing 2014;96(9):829–41. 链接1

[11]  Fridrich J. Digital image forensics using sensor noise. IEEE Signal Proc Mag 2009;26(2):26–37. 链接1

[12]  Gao S, Xu G, Hu RM. Camera model identification based on the characteristic of CFA and interpolation. In: IWDW’11 Proceedings of the 10th International Conference on Digital-Forensics and Watermarking; 2011 Oct 23–26; Atlantic City, NJ, USA. Berlin: Springer-Verlag; 2012. p. 268–80. 链接1

[13]  Prasad P. Image forgery localization via CFA based feature extraction and Poisson matting. Int J Sci Res 2014;3(10):1273–8. 链接1

[14]  Katre Y, Chandel GS. Image forgery detection using analysis of CFA artifacts. Int J Adv Technol Eng Sci 2014;2(1):381–9.

[15]  Lukas J, Fridrich J. Estimation of primary quantization matrix in double compressed JPEG images. In: Proceedings of Digital Forensic Research Workshop; 2003 Aug 5–8; Cleveland, OH, USA. p. 5–8. 链接1

[16]  Fu D, Shi YQ, Su W. A generalized Benford’s law for JPEG coefficients and its applications in image forensics. In: Delp EJ, Wong PW, editors. Proceedings of SPIE—Electronic Imaging 2007: Security, Steganography, and Watermarking of Multimedia Contents IX; 2007 Jan 28–Feb 1; San Jose, CA, USA. Bellingham: International Society for Optics and Photonics; 2007. 65051L1–11. 链接1

[17]  Pevny T, Fridrich J. Detection of double-compression in JPEG images for applications in steganography. IEEE Trans Inf Foren Sec 2008;3(2):247–58. 链接1

[18]  Farid H. Exposing digital forgeries from JPEG ghosts. IEEE Trans Inf Foren Sec 2009;4(1):154–60. 链接1

[19]  Lin Z, He J, Tang X, Tang CK. Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognit 2009;42 (11):2492–501. 链接1

[20]  Huang F, Huang J, Shi YQ. Detecting double JPEG compression with the same quantization matrix. IEEE Trans Inf Foren Sec 2010;5(4):848–56. 链接1

[21]  Yang J, Xie J, Zhu G, Kwong S, Shi YQ. An effective method for detecting double JPEG compression with the same quantization matrix. IEEE Trans Inf Foren Sec 2014;9(11):1933–42. 链接1

[22]  Luo W, Qu Z, Huang J, Qiu G. A novel method for detecting cropped and recompressed image block. In: Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing; 2007 Apr 15–20; Honolulu, HI, USA. Piscataway: IEEE; 2007. p. 217–20. 链接1

[23]  Chen YL, Hsu CT. Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection. IEEE Trans Inf Foren Sec 2011;6(2):396–406. 链接1

[24]  Qu Z, Luo W, Huang J. A convolutive mixing model for shifted double JPEG compression with application to passive image authentication. In: Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing; 2008 Mar 30–Apr 4; Las Vegas, NV, USA. Piscataway: IEEE; 2008. p. 1661–4. 链接1

[25]  Bianchi T, Piva A. Detection of nonaligned double JPEG compression based on integer periodicity maps. IEEE Trans Inf Foren Sec 2012;7(2):842–8. 链接1

[26]  Bianchi T, Piva A. Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans Inf Foren Sec 2012;7(3):1003–17. 链接1

[27]  Wang SL, Liew AWC, Li SH, Zhang YJ, Li JH. Detection of shifted double JPEG compression by an adaptive DCT coefficient model. EURASIP J Adv Signal Process 2014;2014:101. 链接1

[28]  Johnson MK, Farid H. Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the 7th Workshop on Multimedia and Security; 2005 Aug 1–2; New York, NY, USA. New York: ACM Press; 2005. p. 1–10. 链接1

[29]  Johnson MK, Farid H. Exposing digital forgeries through specular highlights on the eye. In: Proceedings of the 9th International Conference on Information Hiding; 2007 Jun 11–13; Saint Malo, France. Berlin: Springer-Verlag; 2007. p. 311–25. 链接1

[30]  Johnson MK, Farid H. Exposing digital forgeries in complex lighting environments. IEEE Trans Inf Foren Sec 2007;2(3):450–61. 链接1

[31]  Kee E, Farid H. Exposing digital forgeries from 3-D lighting environments. In: Proceedings of 2010 IEEE International Workshop on Information Forensics and Security; 2010 Dec 12–15; Seattle, WA, USA. Piscataway: IEEE; 2010. p. 1–6. 链接1

[32]  Nillius P, Eklundh JO. Automatic estimation of the projected light source direction. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2001 Dec 8–14; Kauai, HI, USA. Piscataway: IEEE; 2001. p. 1076–83. 链接1

[33]  Koenderink JJ, van Doorn AJ, Pont SC. Light direction from shad(ow)ed random Gaussian surfaces. Perception 2004;33(12):1405–20. 链接1

[34]  Zhang W, Cao X, Zhang J, Zhu J, Wang P. Detecting photographic composites using shadows. In: Proceedings of 2009 IEEE International Conference on Multimedia and Expo; 2009 Jun 28–Jul 3; New York, NY, USA. Piscataway: IEEE; 2009. p. 1042–5.

[35]  Fan W, Wang K, Cayre F, Xiong Z. 3D lighting-based image forgery detection using shape-from-shading. In: Proceedings of the 20th European Signal Processing Conference; 2012 Aug 27–31; Bucharest, Romania. Piscataway: IEEE; 2012. p. 1777–81. 链接1

[36]  Bovik AC, Huang TS, Munson DC. The effect of median filtering on edge estimation and detection. IEEE Trans Pattern Anal Mach Intell 1987;9 (2):181–94. 链接1

[37]  Bovik AC. Streaking in median filtered images. IEEE Trans Acoust Speech Signal Process 1987;35(4):493–503. 链接1

[38]  Kirchner M, Fridrich J. On detection of median filtering in digital images. In: Proceedings of SPIE—Electronic Imaging 2010: Media Forensics and Security II; 2010 Jan 17–21; San Jose, CA, USA. Bellingham: International Society for Optics and Photonics; 2010. p. 7541101–12. 链接1

[39]  Cao G, Zhao Y, Ni R, Yu L, Tian H. Forensic detection of median filtering in digital images. In: Proceedings of 2010 IEEE International Conference on Multimedia and Expo; 2010 Jul 19–23; Singapore, Singapore. Piscataway: IEEE; 2010. p. 89–94. 链接1

[40]  Yuan HD. Blind forensics of median filtering in digital images. IEEE Trans Inf Foren Sec 2011;6(4):1335–45. 链接1

[41]  Chen C, Ni J. Median filtering detection using edge based prediction matrix. In: Shi YQ, Kim HJ, Pérez-González F, editors Proceeding of 10th International Workshop on Digital Forensics and Watermarking; 2011 Oct 23–26; Atlantic City, NJ, USA. Berlin: Springer-Verlag; 2012. p. 361–75. 链接1

[42]  Kang X, Stamm MC, Peng A, Ray Liu KJ. Robust median filtering forensics using an autoregressive model. IEEE Trans Inf Foren Sec 2013;8(9):1456–68. 链接1

[43]  Chen C, Ni J, Huang J. Blind detection of median filtering in digital images: A difference domain based approach. IEEE Trans Image Process 2013;22 (12):4699–710. 链接1

[44]  Zhang Y, Li S, Wang S, Shi YQ. Revealing the traces of median filtering using high-order local ternary patterns. IEEE Signal Proc Lett 2014;21(3):275–9. 链接1

[45]  Chen J, Kang X, Liu Y, Jane Wang Z. Median filtering forensics based on convolutional neural networks. IEEE Signal Proc Lett 2015;22(11):1849–53. 链接1

[46]  Ding F, Zhu G, Yang J, Xie J, Shi YQ. Edge perpendicular binary coding for USM sharpening detection. IEEE Signal Proc Lett 2015;22(3):327–31. 链接1

[47]  Cao G, Zhao Y, Ni R. Detection of image sharpening based on histogram aberration and ringing artifacts. In: Proceedings of the 2009 IEEE International Conference on Multimedia and Expo; 2009 Jun 28–Jul 3; New York, NY, USA. Piscataway: IEEE; 2009. p. 1026–9. 链接1

[48]  Cao G, Zhao Y, Ni R, Kot AC. Unsharp masking sharpening detection via overshoot artifacts analysis. IEEE Signal Proc Lett 2011;18(10):603–6. 链接1

[49]  Ding F, Zhu G, Shi YQ. A novel method for detecting image sharpening based on local binary pattern. In: Shi Y, Kim HJ, Pérez-González F, editors. Proceedings of 12th International Workshop on Digital Forensics and Watermarking; 2013 Oct 1–4; Auckland, New Zealand. Berlin: Springer-Verlag; 2013. p. 180–91. 链接1

[50]  Fridrich AJ, Soukal BD, Lukas AJ. Detection of copy-move forgery in digital images. Int J 2003;3(2):652–63. 链接1

[51]  Popescu AC, Farid H. Exposing digital forgeries by detecting duplicated image regions. Technical report. Hanover: Department of Computer Science, Dartmouth College; 2004. Report No.: TR2004-515.

[52]  Bayram S, Sencar HT, Memon N. An efficient and robust method for detecting copy-move forgery. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing; 2009 Apr 19–24; Taipei, Taiwan, China. Washington, DC: IEEE Computer Society; 2009. p. 1053–6. 链接1

[53]  Li W, Yu N. Rotation robust detection of copy-move forgery. In: Proceedings of 2010 IEEE International Conference on Image Processing; 2010 Sep 26–29; Hong Kong, China. Piscataway: IEEE; 2010. p. 2113–6.

[54]  Zandi M, Mahmoudi-Aznaveh A, Mansouri A. Adaptive matching for copy-move Forgery detection. In: Proceedings of 2014 IEEE International Workshop on Information Forensics and Security; 2014 Dec 3–5; Atlanta, GA, USA. Piscataway: IEEE; 2014. p. 119–24. 链接1

[55]  Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E. An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Foren Sec 2012;7(6):1841–54. 链接1

[56]  Popescu AC, Farid H. Exposing digital forgeries by detecting traces of resampling. IEEE Trans Signal Process 2005;53(2):758–67. 链接1

[57]  Gallagher AC. Detection of linear and cubic interpolation in JPEG compressed images. In: Proceedings of the 2nd Canadian Conference on Computer and Robot Vision; 2005 May 9–11; Victoria, BC, Canada. Washington, DC: IEEE Computer Society; 2005. p. 65–72. 链接1

[58]  Mahdian B, Saic S. Blind authentication using periodic properties of interpolation. IEEE Trans Inf Foren Sec 2008;3(3):529–38. 链接1

[59]  Kirchner M, Gloe T. On resampling detection in re-compressed images. In: Proceedings of the 1st IEEE International Workshop on Information Forensics and Security; 2009 Dec 6–9; London, UK. Piscataway: IEEE; 2009. p. 21–5. 链接1

[60]  Vázquez-Padín D, Comesana P, Pérez-González F. An SVD approach to forensic image resampling detection. In: Proceedings of the 23rd European Signal Processing Conference; 2015 Aug 31–Sep 4; Nice, France. Piscataway: IEEE; 2015. p. 2112–6. 链接1

[61]  Avcibas I, Bayram S, Memon N, Ramkumar M, Sankur B. A classifier design for detecting image manipulations. In: Proceedings of the International Conference on Image Processing; 2004 Oct 24–27; Singapore, Singapore. Piscataway: IEEE; 2004. p. 2645–8. 链接1

[62]  Shi YQ, Chen C, Chen W. A natural image model approach to splicing detection. In: Proceedings of the 9th Workshop on Multimedia and Security; 2007 Sep 20–21; Dallas, TX, USA. New York: ACM Press; 2007. p. 51–62. 链接1

[63]  Ng TT, Hsu J, Chang SF. Columbia image splicing detection evaluation dataset [Internet]. Available from: http://www.ee.columbia.edu/ln/dvmm/downloads/ AuthSplicedDataSet/dlform.html.

[64]  Wang W, Dong J, Tan T. Effective image splicing detection based on image chroma. In: Proceedings of the 16th IEEE International Conference on Image Processing; 2009 Nov 7–10; Cairo, Egypt. Piscataway: IEEE; 2009. p. 1257–60. 链接1

[65]  He Z, Lu W, Sun W, Huang J. Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recognit 2012;45(12):4292–9. 链接1

[66]  Zhao X, Wang S, Li S, Li J. Passive image-splicing detection by a 2-D noncausal Markov model. IEEE Trans Circuits Syst Video Techn 2015;25(2):185–99. 链接1

[67]  Bayar B, Stamm MC. A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security; 2016 Jun 20–22; Vigo, Spain. New York: ACM Press; 2016. p. 5–10. 链接1

[68]  Bondi L, Güera D, Baroffio L, Bestagini P, Delp EJ, Tubaro S. A preliminary study on convolutional neural networks for camera model identification. In: Proceedings of IS&T International Symposium on Electronic Imaging: Media Watermarking, Security, and Forensics; 2017 Jan 29–Feb 2; San Francisco, CA, USA. Washington, DC: Society for Imaging Science and Technology; 2017. p. 67–76. 链接1

[69]  Bayar B, Stamm MC. On the robustness of constrained convolutional neural networks to JPEG post-compression for image resampling detection. In: Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing; 2017 Mar 5–9; New Orleans, LA, USA. Piscataway: IEEE; 2017. p. 2152–6. 链接1

[70]  Chen J, Kang X, Liu Y, Wang ZJ. Median filtering forensics based on convolutional neural networks. IEEE Signal Proc Lett 2015;22(11):1849–53. 链接1

[71]  Liu Y, Guan Q, Zhao X, Cao Y. Image forgery localization based on multi-scale convolutional neural networks. 2017. arXiv: 1706.07842v3. 链接1

相关研究