期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第3期 doi: 10.1016/j.eng.2018.05.004

表面驱动高压工艺

a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
b Department of Chemistry, Zhejiang University, Hangzhou 310027, China
c School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA
d Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
e Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań 61-614, Poland

收稿日期: 2017-12-17 修回日期: 2018-02-06 录用日期: 2018-05-10 发布日期: 2018-05-22

下一篇 上一篇

摘要

许多化学过程都要在高压下进行,因为高压状态能提高产率,加快化学反应的速率,分离过程中提高溶剂功率,并通过增加分子能量和分子碰撞率来克服活化作用的障碍。通过金刚石砧室压力能高达数百万巴,实验室就能达到这种效果,因此为利用热力学、输运和电子性质来进行化学合成以及合成新材料提供了新的途径。然而,在工业规模上,高压工艺目前正受到压缩成本和有限材料的约束,因此很少有工业过程能够在在压力超过25 MPa的情况下进行。本文提出了一种高压工艺的替代方法,即利用来自固体底物的表面驱动的相互作用产生非常高的局部压力。近期的实验和分子模拟表明,这种相互作用可以产生高达数万巴的局部压力,某些情况下甚至可以达到数百万巴。由于活跃的高压区域分布不均匀,压力在不同方向上存在差异。在许多情况下,增强最多的是平行于底物表面的压力(切向压力)。这种压力是施加在要加工的分子上的,而不是施加在固体底物或容器上。本文综述了现阶段对这种增压的认识,并讨论了一种基于表面驱动力的可行方法来达到高压处理的效果。这种表面驱动高压处理的优点在于,相比传统的整体相位处理,它能达到更高的压力,因为它不需要机械压缩。此外,过程中没有对容器施加更大的压力,因此不用担心材料受损。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Zhang L, Wang Y, Lv J, Ma Y. Materials discovery at high pressures. Nat Rev Mater 2017;2(4):17005. 链接1

[ 2 ] Gregg SJ, Sing KSW. Adsorption surface area and porosity. London: Academic Press; 1967. 链接1

[ 3 ] Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. London: Academic Press; 1982.

[ 4 ] Karnaukhov AP. Improvement of methods for surface-area determinations. J Colloid Interface Sci 1985;103(2):311–20. 链接1

[ 5 ] Aranovich GL, Donohue MD. Surface compression in adsorption systems. Colloids Surf 2001;187–188:95–108. 链接1

[ 6 ] Chu YS, Robinson IK, Gewirth AA. Properties of an electrochemically deposited Pb monolayer on Cu(111). Phys Rev B 1997;55(12):7945–54. 链接1

[ 7 ] Schabes-Retchkiman S, Venables JA. Structural studies of xenon and krypton solid monolayers on graphite using transmission electron diffraction. Surf Sci 1981;105(2–3):536–64. 链接1

[ 8 ] Calisti S, Suzanne J, Venables JA. A LEED study of adsorbed neon on graphite. Surf Sci 1982;115(3):455–68. 链接1

[ 9 ] Van Bavel AP, Hopstaken MJP, Curulla D, Niemantsverdriet JW, Lukkien JJ, Hilbers PAJ. Quantification of lateral repulsion between coadsorbed Co and N on Rh(100) using temperature-programmed desorption, low-energy electron diffraction, and Monte Carlo simulations. J Chem Phys 2003;119(1):524–32. 链接1

[10] Al-Sarraf N, King DA. Calorimetric adsorption heats on low-index nickel surfaces. Surf Sci 1994;307–309(Pt A):1–7. 链接1

[11] Ghorbanfekr-Kalashami H, Vasu KS, Nair RR, Peeters FM, Neek-Amal M. Dependence of the shape of graphene nanobubbles on trapped substance. Nat Commun 2017;8:15844. 链接1

[12] Vasu KS, Prestat E, Abraham J, Dix J, Kashtiban RJ, Beheshtian J, et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat Commun 2016;7:12168. 链接1

[13] Khestanova E, Guinea F, Fumagalli L, Geim AK, Grigorieva IV. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat Commun 2016;7:12587. 链接1

[14] Zamborlini G, Imam M, Patera LL, Mente,s TO, Stojic´ N, Africh C, et al. Nanobubbles at GPa pressure under graphene. Nano Lett 2015;15(9):6162–9. 链接1

[15] Parsonage NG. Monte Carlo studies of a two-dimensional commensurate- incommensurate system—effects of change of particle size and interaction parameters at constant number density. J Chem Soc Faraday Trans 1992;88 (6):777–87. 链接1

[16] Rittner F, Boddenberg B, Bojan MJ, Steele WA. Adsorption of nitrogen on rutile (110): Monte Carlo computer simulations. Langmuir 1999;15(4):1456–62. 链接1

[17] Nguyen VT, Do DD, Nicholson D. On the heat of adsorption at layering transitions in adsorption of noble gases and nitrogen on graphite. J Phys Chem C 2010;114(50):22171–80. 链接1

[18] Aranovich GL, Donohue MD. Adsorption compression: an important new aspect of adsorption behavior and capillarity. Langmuir 2003;19(7):2722–35. 链接1

[19] Wetzel TE, Erickson JS, Donohue PS, Charniak CL, Aranovich GL, Donohue MD. Monte Carlo simulations on the effect of substrate geometry on adsorption and compression. J Chem Phys 2004;120(24):11765–74. 链接1

[20] Long Y, Palmer JC, Coasne B, S´ liwinska-Bartkowiak M, Gubbins KE. Pressure enhancement in carbon nanopores: a major confinement effect. Phys Chem Chem Phys 2011;13(38):17163–70. 链接1

[21] S´ liwin´ ska-Bartkowiak M, Drozdowski H, Kempin´ ski M, Jaz_ dz_ ewska M, Long Y,Palmer JC, et al. Structural analysis of water and carbon tetrachloride adsorbed in activated carbon fibres. Phys Chem Chem Phys 2012;14(19):7145–53.

[22] Long Y, Palmer JC, Coasne B, S´ liwinska-Bartkowiak M, Gubbins KE. Under pressure: quasi-high pressure effects in nanopores. Microporous Mesoporous Mater 2012;154(19):19–23. 链接1

[23] Abaza S, Aranovich GL, Donohue MD. Adsorption compression in surface layers. Mol Phys 2012;110(11–12):1289–98. 链接1

[24] Long Y, S´ liwinska-Bartkowiak M, Drozdowski H, Kempinski M, Phillips KA,Palmer JC, et al. High pressure effect in nanoporous carbon materials: effects of pore geometry. Colloids Surf A 2013;437:33–41.

[25] Long Y, Palmer JC, Coasne B, S´ liwinska-Bartkowiak M, Jackson G, Müller EA,et al. On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness. J Chem Phys 2013;139 (14):144701. 链接1

[26] Coasne B, Long Y, Gubbins KE. Pressure effects in confined nanophases. Mol Simul 2014;40(7–9):721–30. 链接1

[27] Addington CK, Mansell JM, Gubbins KE. Computer simulation of conductive linear sulfur chains confined in carbon nanotubes. Mol Simul 2017;43 (7):519–25. 链接1

[28] Srivastava D, Santiso EE, Gubbins KE. Pressure enhancement in confined fluids: effect of molecular shape and fluid-wall interactions. Langmuir 2017;33 (42):11231–45. 链接1

[29] Schofield P, Henderson JR. Statistical mechanics of inhomogeneous fluids. Proc R Soc A 1982;379(1776):231–46. 链接1

[30] Gray CG, Gubbins KE, Joslin CG. Theory of molecular fluids. 2. Applications. Oxford: Oxford University Press; 2011.

[31] Addington CK, Long Y, Gubbins KE. The pressure in interfaces having cylindrical geometry. J Chem Phys 2018. In press. 链接1

[32] Irving JH, Kirkwood JG. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys 1950;18 (6):817–29. 链接1

[33] Shi K, Gu K, Shen Y, Srivastava D, Santiso EE, Gubbins KE. High density equation of state for a two-dimensional Lennard-Jones solid. J Chem Phys 2018;148(17):174505. 链接1

[34] Günther G, Prass J, Paris O, Schoen M. Novel insights into nanopore deformation caused by capillary condensation. Phys Rev Lett 2008;101 (8):086104. 链接1

[35] Urita K, Shiga Y, Fujimori T, Iiyama T, Hattori Y, Kanoh H, et al. Confinement in carbon nanospace-induced production of KI nanocrystals of high-pressure phase. J Am Chem Soc 2011;133(27):10344–7. 链接1

[36] Cui ST, McCabe C, Cummings PT, Cochran HD. Molecular dynamics study of the nano-rheology of n-dodecane confined between planar surfaces. J Chem Phys 2003;118(19):8941–4. 链接1

[37] Kumacheva E, Klein J. Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films. J Chem Phys 1998;108 (16):7010–22. 链接1

[38] Klein J, Kumacheva E. Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J Chem Phys 1998;108 (16):6996–7009. 链接1

[39] Klein J, Kumacheva E. Confinement-induced phase transitions in simple liquids. Science 1995;269(5225):816–9. 链接1

[40] Hu HW, Carson GA, Granick S. Relaxation time of confined liquids under shear. Phys Rev Lett 1991;66(21):2758–61. 链接1

[41] Fujiwara Y, Nishikawa K, Iijima T, Kaneko K. Simulation of small-angle X-ray scattering behavior of activated carbon fibers adsorbing water. J Chem Soc Faraday Trans 1991;87(17):2763–8. 链接1

[42] Asaumi K, Mori T. High-pressure optical absorption and X-ray-diffraction studies in RbI and KI approaching the metallization transition. Phys Rev B 1983;28(6):3529–33. 链接1

[43] Casco ME, Silvestre-Albero J, Ramírez-Cuesta AJ, Rey F, Jordá JL, Bansode A, et al. Methane hydrate formation in confined nanospace can surpass nature. Nat Commun 2015;6(1):6432. 链接1

[44] Fu Q, Bao X. Surface chemistry and catalysis confined under two-dimensional materials. Chem Soc Rev 2017;46(7):1842–74. 链接1

[45] Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science 2016;353(6298):aac9439. 链接1

[46] Lim CH, Nesladek M, Loh KP. Observing high-pressure chemistry in graphene bubbles. Angew Chem Int Ed 2014;53(1):215–9. 链接1

[47] Lim CH, Sorkin A, Bao Q, Li A, Zhang K, Nesladek M, et al. A hydrothermal anvil made of graphene nanobubbles on diamond. Nat Commun 2013;4:1556. 链接1

[48] Kaneko K, Fukuzaki N, Kakei K, Suzuki T, Ozeki S. Enhancement of NO dimerization by micropore fields of activated carbon-fibers. Langmuir 1989;5 (4):960–5. 链接1

[49] Byl O, Kondratyuk P, Yates JT. Adsorption and dimerization of NO inside single- walled carbon nanotubes—an infrared spectroscopic study. J Phys Chem B 2003;107(18):4277–9. 链接1

[50] Lísal M, Brennan JK, Smith WR. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores. J Chem Phys 2006;124(6):064712. 链接1

[51] Tripathi S, Chapman WG. A density functional approach to chemical reaction equilibria in confined systems: application to dimerization. J Chem Phys 2003;118(17):7993–8003. 链接1

[52] Turner CH, Johnson JK, Gubbins KE. Effect of confinement on chemical reaction equilibria: the reactions 2NO (NO)2 and N2 + 3H2 2NH3 in carbon micropores. J Chem Phys 2001;114(4):1851–9. 链接1

[53] Srivastava D, Turner CH, Santiso EE, Gubbins KE. The nitric oxide dimer reaction in carbon nano-pores. J Phys Chem B 2018;122(13):3604–14. 链接1

[54] Marshall WL, Franck EU. Ion product of water substance, 0–1000 °C, 1–10 000 bars new international formulation and its background. J Phys Chem Ref Data 1981;10(2):295–304. 链接1

[55] Ding Y, Zhang GT, Wu H, Hai B, Wang LB, Qian YT. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater 2001;13 (2):435–40. 链接1

[56] Fujimori T, Morelos-Gómez A, Zhu Z, Muramatsu H, Futamura R, Urita K, et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 2013;4:2162. 链接1

[57] Fujimori T, dos Santos RB, Hayashi T, Endo M, Kaneko K, Tománek D. Formation and properties of selenium double-helices inside double-wall carbon nanotubes: experiment and theory. ACS Nano 2013;7(6): 5607–13. 链接1

[58] Medeiros PVC, Marks S, Wynn JM, Vasylenko A, Ramasse QM, Quigley D, et al. Single-atom scale structural selectivity in Te nanowires encapsulated inside ultra-narrow, single-walled carbon nanotubes. ACS Nano 2017;11 (6):6178–85. 链接1

[59] Stillinger FH, Weber TA. Molecular dynamics study of chemical reactivity in liquid sulfur. J Phys Chem 1987;91(19):4899–907. 链接1

[60] Chipot C, Pohorille A. Free energy calculations. Berlin: Springer; 2007. 链接1

[61] Hu Y, Huang L, Zhao S, Liu H, Gubbins KE. Effect of confinement in nano-porous materials on the solubility of a supercritical gas. Mol Phys 2016;114 (22):3294–306. 链接1

[62] Streett WB. Gas-gas equilibrium: high pressure limits. Can J Chem Eng 1974;52(1):92–7. 链接1

[63] Schneider GM. High pressure thermodynamics of mixtures. Pure Appl Chem 1976;47(4):277–91. 链接1

[64] Rowlinson JS, Swinton FL. Liquids and liquid mixtures. 3rd ed. London: Butterworth Scientific Press; 1982.

[65] Schneider GM. High pressure investigations on fluid systems—a challenge to experiment, theory, and application. J Chem Thermodyn 1991;23(4):301–26. 链接1

[66] Minomura S. Pressure-induced insulator-metal transition. In: Fritzshe H, Adler D, editors. Localization and metal-insulator transitions. New York: Plenum Press; 1985. p. 63–76.

[67] Chacham H, Zhu X, Louie SG. Pressure-induced insulator-metal transitions in solid xenon and hydrogen: a first-principles quasiparticle study. Phys Rev B 1992;46(11):6688–99; Erratum in: Phys Rev B 1993;48(3):2025. 链接1

[68] Hemley RJ, Ashcroft NW. The revealing role of pressure in the condensed matter sciences. Phys Today 1998;51(8):26–32. 链接1

[69] Imada M, Fujimori A, Tokura Y. Metal-insulator transitions. Rev Mod Phys 1998;70(4):1039–263. 链接1

相关研究