期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第3期 doi: 10.1016/j.eng.2018.05.006

从绿色化学的角度提高石油采收率——通过二氧化碳泡沫进行封存

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA

收稿日期: 2017-12-13 修回日期: 2018-01-26 录用日期: 2018-05-14 发布日期: 2018-05-21

下一篇 上一篇

摘要

通过二氧化碳(CO2)驱油来提高石油采收率(EOR),这作为一种经济上可行的碳封存方法受到了相当大的关注,并且最近许多研究都集中在开发增强的CO2发泡添加剂上。然而,人们对这些添加剂在泄漏事件中潜在的长期环境影响知之甚少,并且考虑到在典型的CO2 EOR操作中注入添加剂的量,其对环境的影响可能是深远的。本文概述了表面活性剂和表面活性剂/基于纳米颗粒的二氧化碳发泡体系的最新发展情况,重点介绍了CO2泡沫泄漏可能对环境造成的影响。所研究的大多数表面活性剂在油藏条件下不可能降解,并且它们的释放可能对野生动物造成严重的负面影响。随着近来添加剂使用(如非离子表面活性剂、纳米颗粒和其他化学品)的进展,可能不再允许使用苛刻的阴离子表面活性剂。本文讨论了生产泡沫系统的最新进展,并着重介绍了开发环境友好型CO2 EOR方法的可能策略。

图片

图1

参考文献

[ 1 ] Moritis G. CO2 miscible, steam dominate enhanced oil recovery processes. Oil Gas J Tulsa 2010;108(14):36–40. 链接1

[ 2 ] Enick RM, Olsen DK. Mobility and conformance control for carbon dioxide enhanced oil recovery (CO2-EOR) via thickeners, foams, and gels—a detailed literature review of 40 years of research. Report. Pittsburgh: National Energy Technology Laboratory, US Department of Energy; 2012.

[ 3 ] Duda JR, Kuuskraa V, Godec M, Van Leeuwen T. Modeling exercises assess US CO2-EOR potential. Oil Gas J Tulsa 2010;108(13):52–5. 链接1

[ 4 ] Bernard GC, Holm LW, Harvey CP. Use of surfactant to reduce CO2 mobility in oil displacement. SPE J 1980;20(4):281–92. 链接1

[ 5 ] Eastoe J, Hatzopoulos MH, Tabor R. Microemulsions. In: Tadros T, editor. Encyclopedia of colloid and interface science. Berlin: Springer-Verlag; 2013. p. 688–728. 链接1

[ 6 ] Li RF, Yan W, Liu S, Hirasaki GJ, Miller CA. Foam mobility control for surfactant enhanced oil recovery. SPE J 2010;15(4):928–48. 链接1

[ 7 ] Hirasaki GJ, Miller CA, Puerto M. Recent advances in surfactant EOR. SPE J 2011;16(4):889–907. 链接1

[ 8 ] Xing D, Wei B, McLendon W, Enick RM, McNulty S, Trickett K, et al. CO2- soluble, nonionic, water-soluble surfactants that stabilize CO2-in-brine foams. SPE J 2012;17(4):1172–85. 链接1

[ 9 ] Cummings S, Enick R, Rogers S, Heenan R, Eastoe J. Amphiphiles for supercritical CO2. Biochimie 2012;94(1):94–100. 链接1

[10] Sagir M, Tan IM, Mushtaq M, Talebian SH. FAWAG using CO2-philic surfactants for CO2 mobility control for enhanced oil recovery applications. In: Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition; 2014 Apr 21–24; Al-Khobar, Saudi Arabia. Richardson: Society of Petroleum Engineers; 2014. 链接1

[11] Basics of green chemistry [Internet]. Washington, DC: Green Chemistry Program, US Environmental Protection Agency; [cited 2017 Nov 4]. Available from: https://www.epa.gov/greenchemistry/basics-green-chemistry. 链接1

[12] Iribarren D, Petrakopoulou F, Dufour J. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery. Energy 2013;50:477–85. 链接1

[13] Aarra MG, Skauge A, Solbakken J, Ormehaug PA. Properties of N2- and CO2-foams as a function of pressure. J Petrol Sci Eng 2014;116:72–80. 链接1

[14] Perera M, Gamage R, Rathnaweera T, Ranathunga A, Koay A, Choi X. A review of CO2-enhanced oil recovery with a simulated sensitivity analysis. Energies 2016;9(12):481. 链接1

[15] Talebian SH, Masoudi R, Tan IM, Zitha PLJ. Foam assisted CO2-EOR: a review of concept, challenges, and future prospects. J Petrol Sci Eng 2014;120:202–15. 链接1

[16] Shamsijazeyi H, Miller CA, Wong MS, Tour JM, Verduzco R. Polymer-coated nanoparticles for enhanced oil recovery. J Appl Polym Sci 2014;131 (15):4401–4. 链接1

[17] Barnes JR, Regalado DP, Doll MJ, King TE, Pretzer LE, Semple TC. Essentials of upscaling surfactants for EOR field projects. In: Proceedings of the Twentieth SPE Improved Oil Recovery Conference; 2016 Apr 11–13; Tulsa, OK, USA. Red Hook: Curran Associates, Inc.; 2016. p. 681–98. 链接1

[18] Li D, Ren B, Zhang L, Ezekiel J, Ren S, Feng Y. CO2-sensitive foams for mobility control and channeling blocking in enhanced WAG process. Chem Eng Res Des 2015;102:234–43. 链接1

[19] Zhang YM, Chu ZL, Dreiss CA, Wang YJ, Fei CH, Feng YJ. Smart wormlike micelles switched by CO2 and air. Soft Matter 2013;9(27):6217–21. 链接1

[20] Zhang YM, Feng YJ, Wang YJ, Li XL. CO2-switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir 2013;29(13):4187–92. 链接1

[21] Sagir M, Tan IM, Mushtaq M, Pervaiz M, Tahir MS, Shahzad K. CO2 mobility control using CO2-philic surfactant for enhanced oil recovery. J Pet Explor Prod Technol 2016;6(3):401–7. 链接1

[22] Talebian SH, Tan IM, Sagir M, Muhammad M. Static and dynamic foam/oil interactions: potential of CO2-philic surfactants as mobility control agents. J Petrol Sci Eng 2015;135:118–26. 链接1

[23] Farzaneh SA, Sohrabi M. Experimental investigation of CO2-foam stability improvement by alkaline in the presence of crude oil. Chem Eng Res Des 2015;94:375–89. 链接1

[24] Xu X, Saeedi A, Liu K. An experimental study of combined foam/surfactant polymer (SP) flooding for carbon dioxide-enhanced oil recovery (CO2-EOR). J Petrol Sci Eng 2017;149:603–11. 链接1

[25] Xu X, Saeedi A, Liu K. Experimental study on a novel foaming formula for CO2 foam flooding. J Energy Resour Technol 2017;139(2):022902. 链接1

[26] Lv M, Wang S. Studies on CO2 foam stability and the influence of polymer on CO2 foam properties. Int J Oil Gas Coal Technol 2015;10:343–58. 链接1

[27] Lv W, Li Y, Li Y, Zhang S, Deng QH, Yang Y, et al. Ultra-stable aqueous foam stabilized by water-soluble alkyl acrylate crosspolymer. Colloids Surf Physicochem Eng Asp 2014;457:189–95. 链接1

[28] Memon MK, Elraies KA, Al-Mossawy MI. Impact of new foam surfactant blend with water alternating gas injection on residual oil recovery. J Pet Explor Prod Technol 2017;7(3):843–51. 链接1

[29] AttarHamed F, Zoveidavianpoor M. The foaming behavior and synergistic effect in aqueous CO2 foam by in situ physisorption of alpha olefin sulfonate and triton X-100 surfactants and their mixture. Petrol Sci Technol 2014;32 (19):2376–86. 链接1

[30] Wang C, Li HA. Stability and mobility of foam generated by gas- solvent/surfactant mixtures under reservoir conditions. J Nat Gas Sci Eng 2016;34:366–75. 链接1

[31] Wang Y, Zhang Y, Liu Y, Zhang L, Ren S, Lu J, et al. The stability study of CO2 foams at high pressure and high temperature. J Petrol Sci Eng 2017;154:234–43. 链接1

[32] Dey S, Malik S, Ghosh A, Saha R, Saha B. A review on natural surfactants. RSC Adv 2015;5(81):65757–67. 链接1

[33] Yuan Q, Wang XH, Dandekar A, Sun CY, Li QP, Ma ZW, et al. Replacement of methane from hydrates in porous sediments with CO2-in-water emulsions. Ind Eng Chem Res 2014;53(31):12476–84. 链接1

[34] Tang J, Quinlan PJ, Tam KC. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter 2015;11(18):3512–29. 链接1

[35] Liu N. Nanoparticle-stabilized CO2 foam for CO2 EOR application. Final report. Pittsburgh: National Energy Technology Laboratory, US Department of Energy; 2015 Apr. 链接1

[36] Sun X, Zhang Y, Chen G, Gai Z. Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies 2017;10(3):345. 链接1

[37] Yekeen N, Idris AK, Manan MA, Samin AM, Risal AR, Kun TX. Bulk and bubble- scale experimental studies of influence of nanoparticles on foam stability. Chin J Chem Eng 2017;25(3):347–57. 链接1

[38] Kalyanaraman N, Arnold C, Gupta A, Tsau JS, Ghahfarokhi RB. Stability improvement of CO2 foam for enhanced oil-recovery applications using polyelectrolytes and polyelectrolyte complex nanoparticles. J Appl Polym Sci 2017;134(6):44491. 链接1

[39] Zhang C, Li Z, Sun Q, Wang P, Wang S, Liu W. CO2 foam properties and the stabilizing mechanism of sodium bis(2-ethylhexyl) sulfosuccinate and hydrophobic nanoparticle mixtures. Soft Matter 2016;12(3):946–56. 链接1

[40] Li S, Li Z, Wang P. Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles. Ind Eng Chem Res 2016;55(5):1243–53. 链接1

[41] Rognmo AU, Horjen H, Fernø M. Nanotechnology for improved CO2 utilization in CCS: laboratory study of CO2-foam flow and silica nanoparticle retention in porous media. Int J Greenhouse Gas Control 2017;64:113–8. 链接1

[42] AttarHamed F, Zoveidavianpoor M, Jalilavi M. The incorporation of silica nanoparticle and alpha olefin sulphonate in aqueous CO2 foam: investigation of foaming behavior and synergistic effect. Petrol Sci Technol 2014;32 (21):2549–58. 链接1

[43] Li S, Qiao C, Li Z, Wanambwa S. Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide. Energy Fuels 2017;31(2):1478–88. 链接1

[44] Farhadi H, Riahi S, Ayatollahi S, Ahmadi H. Experimental study of nanoparticle- surfactant-stabilized CO2 foam: stability and mobility control. Chem Eng Res Des 2016;111:449–60. 链接1

[45] Emrani AS, Nasr-El-Din HA. Stabilizing CO2 foam by use of nanoparticles. SPE J 2017;22(2):494–504. 链接1

[46] Emrani AS, Nasr-El-Din HA. An experimental study of nanoparticle-polymer- stabilized CO2 foam. Colloids Surf Physicochem Eng Asp 2017;524:17–27.

[47] Manan MA, Farad S, Piroozian A, Esmail MJA. Effects of nanoparticle types on carbon dioxide foam flooding in enhanced oil recovery. Petrol Sci Technol 2015;33(12):1286–94. 链接1

[48] Dong X, Xu J, Cao C, Sun D, Jiang X. Aqueous foam stabilized by hydrophobically modified silica particles and liquid paraffin droplets. Colloids Surf Physicochem Eng Asp 2010;353(2–3):181–8. 链接1

[49] Yang W, Wang T, Fan Z, Miao Q, Deng Z, Zhu Y. Foams stabilized by in situ-modified nanoparticles and anionic surfactants for enhanced oil recovery. Energy Fuels 2017;31(5):4721–30. 链接1

[50] Singh R, Mohanty KK. Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery. Energy Fuels 2015;29(2):467–79. 链接1

[51] Yang W, Wang T, Fan Z. Highly stable foam stabilized by alumina nanoparticles for EOR: effects of sodium cumenesulfonate and electrolyte concentrations. Energy Fuels 2017;31(9):9016–25. 链接1

[52] Guo F, Aryana S. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel 2016;186:430–42. 链接1

[53] Lee D, Cho H, Lee J, Huh C, Mohanty K. Fly ash nanoparticles as a CO2 foam stabilizer. Powder Technol 2015;283:77–84. 链接1

[54] Kumar S, Mandal A. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery. Appl Surf Sci 2017;420:9–20. 链接1

[55] Wang J, Xue G, Tian B, Li S, Chen K, Wang D, et al. Interaction between surfactants and SiO2 nanoparticles in multiphase foam and its plugging ability. Energy Fuels 2017;31(1):408–17. 链接1

[56] Al-Anssari S, Arif M, Wang S, Barifcani A, Iglauer S. Stabilising nanofluids in saline environments. J Colloid Interface Sci 2017;508:222–9. 链接1

[57] Liu LC, Li Q, Zhang JT, Cao D. Toward a framework of environmental risk management for CO2 geological storage in China: gaps and suggestions for future regulations. Mitig Adapt Strategies Global Change 2016;21(2):191–207. 链接1

[58] Xue L, Ma J, Wang S, Li Q, Ma J, Yu H, et al. Effects of CO2 leakage from CCS on the physiological characteristics of C4 crops. Energy Procedia 2014;63:3209–14. 链接1

[59] Koornneef J, Ramírez A, Turkenburg W, Faaij A. The environmental impact and risk assessment of CO2 capture, transport and storage—an evaluation of the knowledge base using the DPSIR framework. Energy Procedia 2011;4:2293–300. 链接1

[60] Hamoodi AN, Abed AF, Firoozabadi A. Compositional modelling of two-phase hydrocarbon reservoirs. J Can Pet Technol 2001;40(4):49–60. 链接1

[61] Hoteit H, Santiso E, Firoozabadi A. An efficient and robust algorithm for the calculation of gas-liquid critical point of multicomponent petroleum fluids. Fluid Phase Equilib 2006;241(1–2):186–95. 链接1

[62] Santiso E, Firoozabadi A. Curvature dependency of surface tension in multicomponent systems. AIChE J 2006;52(1):311–22. 链接1

[63] LeNeveu DM. Potential for environmental impact due to acid gas leakage from wellbores at EOR injection sites near Zama Lake, Alberta. Greenhouse Gases Sci Technol 2012;2(2):99–114. 链接1

[64] Smith SA, Sorensen J, Steadman E, Harju JA. Acid gas injection and monitoring at the Zama Oil Field in Alberta, Canada: a case study in demonstration-scale carbon dioxide sequestration. Energy Procedia 2009;1(1):1981–8. 链接1

[65] Smith SA, Sorensen JA, Steadman EN, Harju JA, Ryan D. Zama acid gas EOR, CO2 sequestration, and monitoring project. Energy Procedia 2011;4:3957–64. 链接1

[66] Cai B, Li Q, Liu G, Liu L, Jin T, Shi H. Environmental concern-based site screening of carbon dioxide geological storage in China. Sci Rep 2017;7(1):7598. 链接1

[67] Ma J, Wang X, Gao R, Zhang X, Wei Y, Wang Z, et al. Monitoring the safety of CO2 sequestration in Jingbian Field, China. Energy Procedia 2013;37:3469–78. 链接1

[68] Tang Y, Yang R, Bian X. A review of sequestration projects and application in China. Sci World J 2014;2014(6):381854. 链接1

[69] Hawkes CD, McLellan PJ, Zimmer U, Bachu S. Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. J Can Pet Technol 2005;44(10):52–61. 链接1

[70] Toxics Release Inventory (TRI) Program: TRI-listed chemicals [Internet]. Washington, DC: TRI Program, US Environmental Protection Agency;[cited 2017 Nov 4]. Available from: https://www.epa.gov/toxics-release- inventory-tri-program/tri-listed-chemicals. 链接1

[71] Asimakopoulos AG, Thomaidis NS, Koupparis MA. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett 2012;210(2):141–54. 链接1

[72] Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 2008;34(7):1033–49. 链接1

[73] Lu Z, Gan J. Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship. Environ Sci Technol 2014;48 (2):1008–14. 链接1

[74] Rebello S, Asok AK, Mundayoor S, Jisha MS. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 2014;12(2):275–87. 链接1

[75] Ambily PS, Rebello S, Jayachandran K, Jisha MS. A novel three-stage bioreactor for the effective detoxification of sodium dodecyl sulphate from wastewater. Water Sci Technol 2017;76(8):2167–76.

[76] Paulo AMS, Plugge CM, García-Encina PA, Stams AJM. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria. Int Biodeterior Biodegrad 2013;84(5):14–20. 链接1

[77] Könnecker G, Regelmann J, Belanger S, Gamon K, Sedlak R. Environmental properties and aquatic hazard assessment of anionic surfactants: physico- chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf 2011;74(6):1445–60. 链接1

[78] García MT, Campos E, Marsal A, Ribosa I. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Res 2009;43(2):295–302. 链接1

[79] Bressan M, Marin MG, Brunetti R. Effect of linear alkylbenzene sulphonate (LAS) on skeletal development of sea urchin embryos (Paracentrotus lividus Lmk). Water Res 1991;25(5):613–6. 链接1

[80] Mungray AK, Kumar P. Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeterior Biodegrad 2009;63(8):981–7. 链接1

[81] Rosal R, Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, Petre A. Ecotoxicological assessment of surfactants in the aquatic environment: combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 2010;81(2):288–93. 链接1

[82] Merrettig-Bruns U, Jelen E. Anaerobic biodegradation of detergent surfactants. Material (Basel) 2009;2(1):181–206. 链接1

[83] Olkowska E, Polkowska Z_ , Namies´nik J. Analytics of surfactants in the environment: problems and challenges. Chem Rev 2011;111(9):5667–700. 链接1

[84] Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine (Lond) 2015;11(6):1407–16. 链接1

[85] Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, et al. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017;91 (9):2967–3010. 链接1

[86] Chen Q, Xue Y, Sun J. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed 2013;8:1129–40. 链接1

[87] Chen X, Wang Z, Zhou J, Fu X, Liang J, Qiu Y, et al. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-jB signaling pathway. Int J Nanomed 2014;10:1–22. 链接1

[88] Forest V, Pailleux M, Pourchez J, Boudard D, Tomatis M, Fubini B, et al. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response. Inhal Toxicol 2014;26(9):545–53. 链接1

相关研究