期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第3期 doi: 10.1016/j.eng.2018.05.007

燃料电池商业化带来的技术经济挑战

a Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada
b State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

收稿日期: 2017-12-03 修回日期: 2018-01-31 录用日期: 2018-05-15 发布日期: 2018-05-21

下一篇 上一篇

摘要

随着资源稀缺、极端气候变化和污染水平的增加,经济增长必须依赖于更加环保和高效的生产过程。燃料电池因其高效率和环保操作而成为通向绿色工业的内燃(IC)发动机和锅炉的理想替代品。然而,作为一种新能源技术,燃料电池的重要市场渗透尚未实现。在本文中,我们使用生命周期和价值链活动对燃料电池系统进行技术经济和环境分析。首先,我们研究燃料电池开发的程序,并根据燃料电池生命周期活动、价值链活动和最终用户验收标准确定应开展哪些活动。接下来,我们将对燃料电池商业化的制度障碍进行统一学习。主要最终用户验收标准是功能、成本和可靠性;与竞争对手(如IC发动机和电池)相比,燃料电池应该优于这些标准,以获得竞争优势。燃料电池的维修和维护成本(由于可靠性低)可能导致成本大幅增加和可用性降低,这是最终用户接受的主要因素。燃料电池行业必须面对如何克服这种可靠性障碍的挑战。本文更深入地了解了我们多年来关于燃料电池商业化的主要障碍的工作,并讨论了燃料电池在未来低碳绿色经济中的潜在关键作用。本文还确定了需求,并指出了未来低碳经济的一些方向。供应燃料电池的绿色能源确实是未来的商业模式。通过采用绿色公共投资和实施政策举措,努力实现经济增长的可持续发展,鼓励对环境负责的工业投资。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Energy security [Internet]. Paris: International Energy Agency; 2018 [cited 2018 April 2]. 链接1

[ 2 ] Jacobsson S, Lauber V. The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy Policy 2006;34(3):256–76. 链接1

[ 3 ] Zhang PD, Yang YN, Shi J, Zheng YH, Wang LS, Li XR. Opportunities and challenges for renewable energy policy in China. Renew Sustain Energy Rev 2009;13(2):439–49. 链接1

[ 4 ] Ong HC, Mahlia TMI, Masjuki HH. A review on energy scenario and sustainable energy in Malaysia. Renew Sustain Energy Rev 2011;15(1):639–47. 链接1

[ 5 ] Wang JY. Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Front Energy Res 2014;2:10. 链接1

[ 6 ] Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev 2008;12 (3):593–661. 链接1

[ 7 ] US Energy Information Administration. Annual energy review 2011. Report. Washington, DC: Office of Energy Statistics, US Department of Energy; 2012. Report No.: DOE/EIA-0384(2011).

[ 8 ] Wang JY. Barriers of scaling-up fuel cells: cost, durability and reliability. Energy 2015;80:509–21. 链接1

[ 9 ] Wang JY, Wang HL. Flow field designs of bipolar plates in PEM fuel cells: theory and applications. Fuel Cells 2012;12(6):989–1003. 链接1

[10] Wang JY, Wang HL. Discrete approach for flow-field designs of parallel channel configurations in fuel cells. Int J Hydrogen Energy 2012;37(14):10881–97. 链接1

[11] Wang JY, Wang HL. Discrete method for design of flow distribution in manifolds. Appl Therm Eng 2015;89:927–45. 链接1

[12] Wang JY. Theory and practice of flow field designs for fuel cell scaling-up: a critical review. Appl Energy 2015;157:640–63. 链接1

[13] Wang JY. System integration, durability and reliability of fuel cells: challenges and solutions. Appl Energy 2017;189:460–79. 链接1

[14] Akinyele DO, Rayudu RK. Review of energy storage technologies for sustain power networks. Sustain Energy Technol Assess 2014;8:74–91.

[15] Jiang RW, Wang JH, Guan YP. Robust unit commitment with wind power and pumped storage hydro. IEEE Trans Power Syst 2012;27(2):800–10. 链接1

[16] Ramakrishnan S, Wang XM, Sanjayan J, Wilson J. Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Appl Energy 2017;194:410–21. 链接1

[17] Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135(4):1167–76. 链接1

[18] Li Y, Yang J, Song J. Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle. Renew Sustain Energy Rev 2017;74:19–25. 链接1

[19] Peters JF, Baumann M, Zimmermann B, Braun J, Weil M. The environmental impact of Li-ion batteries and the role of key parameters—a review. Renew Sustain Energy Rev 2017;67:491–506. 链接1

[20] Electric vehicle battery development gains momentum [Internet]. Golden: National Renewable Energy Laboratory; c2017 [updated 2017 Aug 16; cited 2017 Jul 5]. Available from: http://www.nrel.gov/continuum/sustainable_ transportation/batteries.html.

[21] Schaal E. A simple guide to electric vehicle charging [Internet]. Waterloo: CrossChasm Technologies; c2018 [cited 2017 Jul 5]. Available from: http:// www.fleetcarma.com/electric-vehicle-charging-guide/. 链接1

[22] David H. Range confidence: charge fast, drive far, with your electric car [Internet]. [cited 2017 Jul 5]. Available from: https://greentransportation.info/ ev-charging/range-confidence/chap8-tech/charge-faster-than-gas.html. 链接1

[23] Drive US. Fuel cell technical team roadmap. Southfield: US DRIVE; 2017. 链接1

[24] Toyota hybrid cars: what’s new for 2018 [Internet]. Toronto: Toyota Canada; c2018 [updated 2018 Jan 22; cited 2018 Jan 22]. Available from: https:// www.toyota.ca/toyota/en/connect/2034/hybrid-cars-suvs.

[25] Emadi A, Rajashekara K, Williamson SS, Lukic SM. Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE Trans Vehicular Technol 2005;54(3):763–70. 链接1

[26] Rahman KM, Patel NR, Ward TG, Nagashima JM, Caricchi F, Crescimbini F. Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system. IEEE Trans Indust Appl 2006;42 (5):1185–92. 链接1

[27] Lane B, Shaffer B, Samuelsen GS. Plug-in fuel cell electric vehicles: a California case study. Int J Hydrogen Energy 2017;42(20):14294–300. 链接1

[28] Brunel J, Ponssard JP. Policies and deployment for fuel cell electric vehicles: an assessment of the Normandy project. Int J Hydrogen Energy 2017;42 (7):4276–84. 链接1

[29] Belzile G, Milke M. Are electric vehicle subsidies efficient? [Internet]. Montreal: MEI; c2018 [updated 2017 Jun 22; cited 2018 April 2]. Available from: https://www.iedm.org/71215-are-electric-vehicle-subsidies- efficient. 链接1

[30] Jenn A, Azevedo IML, Michalek JJ. Alternative fuel vehicle adoption increases fleet gasoline consumption and greenhouse gas emissions under United States corporate average fuel economy policy and greenhouse gas emissions standards. Environ Sci Technol 2016;50(5):2165–74. 链接1

[31] Ahluwalia RK, Wang X, Tajiri K, Kumar R. Fuel cell systems analysis Report. Washington, DC: US Department of Energy; 2009.

[32] Yang Y. PEM fuel cell system manufacturing cost analysis for automotive applications. Wellesley: Austin Power Engineering LLC; 2015. 链接1

[33] Platinum prices—interactive historical chart [Internet]. Macrotrends LLC; c2010–2018 [cited 2017 Jul 5]. Available from: http://www.macrotrends.net/ 2540/platinum-prices-historical-chart-data.

[34] Elnozahy A, Rahman AKA, Ali HH, Abdel-Salam M. A cost comparison between fuel cell, hybrid and conventional vehicles. In: Proceedings of the 16th International Middle-east Power Systems Conference—MEPCON 2014; 2014 Dec 23–25; Cairo, Egypt; 2014. 链接1

[35] Curtin S, Gangi J. State of the states: fuel cells in America 2016. 7th edition. Report. Washington, DC: Energy Efficiency, Renewable Energy’s Fuel Cell Technologies Office, US Department of Energy; 2016 Nov. Report No.: DOE/EE- 1493.

[36] Fuel cell electric vehicles: paving the way to commercial success [Internet]. Golden: National Renewable Energy Laboratory; c2017 [updated 2017 Aug 16; cited 2017 Jun 30]. 链接1

[37] Technology readiness levels: a new dimension in horizon 2020 [Internet]. [cited 2017 Jun 30]. 链接1

[38] US Government Accountability Office. Technology readiness assessment guide [Internet]. [cited 2018 April 2]. 链接1

[39] Kinoshita K, Lundquist JT, Stonehart P. Potential cycling effects on platinum electrocatalyst surfaces. J Electroanal Chem 1973;48(2):157–66. 链接1

[40] Yuan XZ, Zhang S, Wang H, Wu J, Sun JC, Hiesgen R, et al. Degradation of a PEM fuel cell stack with nafion membranes of different thicknesses. Part I: in situ diagnosis. J Power Sources 2010;195(22):7594–9. 链接1

[41] Zakaria Z, Kamarudin SK, Timmiati SN. Membranes for direct ethanol fuel cells: an overview. Appl Energy 2016;163:334–42. 链接1

[42] Wei M, Chan SH, Mayyas A, Lipman T. Deployment and capacity trends for stationary fuel cell systems in the USA. In: Stolten D, Samsun RC, Garland N, editors. Fuel cells: data, facts and figures. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 257–69.

[43] Behling N. Solving the fuel cell dilemma. Fuel Cells Bull 2012;2012(11):12–4. 链接1

[44] Powell JB. Application of multiphase reaction engineering and process intensification to the challenges of sustainable future energy and chemicals. Chem Eng Sci 2017;157:15–25.

[45] Wang JY. Theory of flow distributions in manifolds. Chem Eng J 2011;168 (3):1331–45. 链接1

[46] Wang JY. Pressure drop and flow distribution in parallel-channel configurations of fuel cells: Z-type arrangement. Int J Hydrogen Energy 2010;35(11):5498–509. 链接1

[47] Wang JY. Pressure drop and flow distribution in parallel-channel fuel cell stacks: U-type arrangement. Int J Hydrogen Energy 2008;33(21): 6339–50.

[48] Donati G, Paludetto R. Scale up of chemical reactors. Catal Today 1997;34(3– 4):483–533. 链接1

[49] Gordon-Bloomfield N. Toyota admits cutting costs of hydrogen fuel cell technology further will be tough [Internet]. Transport Evolved LLC; c2016 [cited 2017 Jun 30]. 链接1

相关研究