期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第3期 doi: 10.1016/j.eng.2018.05.014

含高浓度无机颗粒的有机废液分离及回用技术

a National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
b Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
c Sinopec Jinling Petrochemical Corporation, Nanjing 210033, China
d Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Fushun 113001, China
e Sinopec Zhenhai Refining and Chemical Com

收稿日期: 2017-12-12 修回日期: 2018-03-02 录用日期: 2018-05-15 发布日期: 2018-05-19

下一篇 上一篇

摘要

有机废液的无害化、资源化处理是环境工程的前沿之一,随着化学品需求不断增加,石油、煤和天然气转化中排放的含高浓度无机污染物的有机废液问题更趋严重。本文通过同步高速摄像技术发现了三维旋转湍流场中颗粒物高速自转和翻转现象,自转速度高达2000~6000 rad·s-1,利用这一现象发明了颗粒物孔隙中有机物旋流自转脱除方法,开发了废液中有机污染物旋流自转回收、无机颗粒物气流加速度分级回用的工艺流程,并成功应用于中国石化第一套自主研发的沸腾床渣油加氢工程示范装置中。该技术与美国T-STAR含废催化剂的有机废液固定床气提技术相比,同温度下催化剂颗粒脱液效率最高可提高44.9个百分点,实现95%脱液效率的处理时间从1956.5 s降低到8.4 s,并实现了外排催化剂颗粒按活性分级进行回用。提出了200万吨/年沸腾床渣油加氢装置的外排有机废液控制及无机颗粒回收利用技术方案,预期可回收柴油3100吨/年,高活性催化剂颗粒647吨/年,降低装置新鲜催化剂消耗量518吨/年,直接经济效益3728万元/年,具有显著的经济、社会和环境效益。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater 2013;261(13):470–90. 链接1

[ 2 ] Xu N, Wang W, Han P, Lu X. Effects of ultrasound on oily sludge deoiling. J Hazard Mater 2009;171(1–3):914–7. 链接1

[ 3 ] Mrayyan B, Battikhi MN. Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. J Hazard Mater 2005;120(1–3):127–34. 链接1

[ 4 ] Schwab AP, Su J, Wetzel S, Pekarek S, Banks MK. Extraction of petroleum hydrocarbons from soil by mechanical shaking. Environ Sci Technol 1999;33 (11):1940–5. 链接1

[ 5 ] Armor JN. A history of industrial catalysis. Catal Today 2011;163(1):3–9. 链接1

[ 6 ] Silvy RP. Future trends in the refining catalyst market. Appl Catal A Gen 2004;261(2):247–52. 链接1

[ 7 ] Furimsky E. Spent refinery catalysts: environment, safety and utilization. Catal Today 1996;30(4):223–86. 链接1

[ 8 ] Weber S, Leuschner P, Kämpfer P, Dott W, Hollender J. Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 2005;67(1):106–12. 链接1

[ 9 ] Liu Y, Wang HL, Xu YX, Fang YY, Chen XR. Sludge disintegration using a hydrocyclone to improve biological nutrient removal and reduce excess sludge. Separ Purif Tech 2017;177:192–9. 链接1

[10] Yang Q, Li ZM, Lv WJ, Wang HL. On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone. Separ Purif Tech 2013;110(23):93–100. 链接1

[11] Zhao K, Bai J, Zeng Q, Zhang Y, Li J, Li L, et al. Efficient wastewater treatment and simultaneously electricity production using a photocatalytic fuel cell based on the radical chain reactions initiated by dual photoelectrodes. J Hazard Mater 2017;337:47–54. 链接1

[12] Neyestani M, Dickenson E, McLain J, Robleto E, Rock C, Gerrity D. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole. Chemosphere 2017;182:149–58. 链接1

[13] Li JP, Yang XJ, Ma L, Yang Q, Zhang YH, Bai ZS, et al. The enhancement on the waste management of spent hydrotreating catalysts for residue oil by a hydrothermal-hydrocyclone process. Catal Today 2016;271(4):163–71. 链接1

[14] Xue Y, Zhang Y, Zhang Y, Zheng S, Zhang Y, Jin W. Electrochemical detoxification and recovery of spent SCR catalyst by in-situ generated reactive oxygen species in alkaline media. Chem Eng J 2017;325:544–53. 链接1

[15] Toulhoat H, Szymanski R, Plumail JC. Interrelations between initial pore structure, morphology and distribution of accumulated deposits, and lifetimes of hydrodemetallisation catalysts. Catal Today 1990;7(4):531–68. 链接1

[16] Rana MS, Sámano V, Ancheyta J, Diaz JAI. A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 2007;86 (9):1216–31. 链接1

[17] Menoufy MF, Ahmed HS. Treatment and reuse of spent hydrotreating catalyst. Energ Source Part A 2008;30(13):1213–22. 链接1

[18] Merino J, Bucalá V. Effect of temperature on the release of hexadecane from soil by thermal treatment. J Hazard Mater 2007;143(1–2):455–61. 链接1

[19] Ayen RJ, Swanstrom CP. Low temperature thermal treatment for petroleum refinery waste sludges. Environ Prog Sustain 1992;11(2):127–33. 链接1

[20] Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manage 2017;197:177–98. 链接1

[21] Singh R, Gbordzoe E. Modeling FCC spent catalyst regeneration with computational fluid dynamics. Powder Technol 2017;316:560–8. 链接1

[22] Leyva C, Ancheyta J, Mariey L, Travert L, Maugé F. Characterization study of NiMo/SiO2-Al2O3 spent hydroprocessing catalysts for heavy oils. Catal Today 2014;220–222(5):89–96. 链接1

[23] Rana MS, Ancheyta J, Sahoo SK, Rayo P. Carbon and metal deposition during the hydroprocessing of Maya crude oil. Catal Today 2014;220–222(4):97–105. 链接1

[24] Angeles MJ, Leyva C, Ancheyta J, Ramírez S. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst. Catal Today 2014;220–222(9):274–94. 链接1

[25] Jackson CR, Stessel RI, Peirce JJ. Passive pulsing air-classifier theory. J Environ Eng 1988;114(1):106–9. 链接1

[26] Everett J, Peirce JJ. Effect of feed rate and classifier height on air classification. J Environ Eng 1990;116(4):735–45. 链接1

[27] Duan C, Li H, He J, Zhao Y, Dong L, Lv K, et al. Experimental and numerical simulation of spent catalyst separation in an active pulsing air classifier. Sep Sci Technol 2015;50(5):633–45. 链接1

[28] Huang Y, Li JP, Zhang YH, Wang HL. High-speed particle self-rotation for coating oil removal by hydrocyclone. Separ Purif Tech 2017;177:263–71. 链接1

[29] Huang Y, Wang HL, Chen YQ, Zhang YH, Yang Q, Bai ZS, et al. Liquid-liquid extraction intensification by micro-droplet rotation in a hydrocyclone. Sci Rep 2017;7(1):2678. 链接1

相关研究