期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第4期 doi: 10.1016/j.eng.2018.06.001

纳米多孔储气材料的物理吸附特性研究进展

Quantachrome Instruments, Boynton Beach, FL 33426, USA

收稿日期: 2017-12-15 修回日期: 2018-02-26 录用日期: 2018-06-05 发布日期: 2018-06-12

下一篇 上一篇

摘要

评估纳米多孔材料的吸附性能并确定它们的结构表征,对于将这类材料用于包括气体储存在内的许多应用至关重要。气体吸附法可用于此表征,因为它可以评估从微孔到中孔的各种孔径。在过去的20 年中,关于有序纳米多孔材料中流体的吸附和相行为的知识以及基于统计力学的最先进的方法的创新和发展,如分子模拟和密度泛函理论,都取得了重大进展。再结合高分辨率的亚临界和超临界流体吸附实验程序,使物理吸附结构表征取得了显著进步。笔者不仅讨论了流体在具有明确孔隙结构的各种纳米多孔材料中基础吸附机理的一些重要和中心特征,还讨论了这些特征对促进物理吸附表征和储存气体应用的重要性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 2015;87(9–10):1051–69. 链接1

[ 2 ] Thommes M. Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. In: Cˇejka J, van Bekkum H, Corma A, Schüth F,editors. Introduction to zeolite science and practice. Amsterdam: Elsevier Ltd.; 2007. p. 495–523.

[ 3 ] Thommes M, Cychosz KA. Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 2014;20(2–3):233–50.4 链接1

[ 4 ] Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, Thommes M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev 2017;46(2):389–414. 链接1

[ 5 ] Thommes M, Cychosz KA, Neimark AV. Advanced physical adsorption characterization of nanoporous carbons. In: Tascón JMD, editor. Novel carbon adsorbents. Amsterdam: Elsevier Ltd.; 2012. p. 107–45. 链接1

[ 6 ] Senkovska I, Cychosz KA, Llewellyn P, Thommes M, Kaskel S. Adsorption methodology. In: Kaskel S, editor. The chemistry of metal-organic frameworks: synthesis, characterization, and applications. New York: John Wiley & Sons; 2016. p. 575–605.

[ 7 ] Lässig D, Lincke J, Moellmer J, Reichenbach C, Moeller A, Gläser R, et al. A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew Chem Int Ed 2011;50 (44):10344–8. 链接1

[ 8 ] Silvestre-Albero J, Silvestre-Albero A, Rodriguez-Reinoso F, Thommes M. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry. Carbon 2012;50(9):3128–33. 链接1

[ 9 ] Neimark AV, Coudert FX, Boutin A, Fuchs AH. Stress-based model for the breathing of metal-organic frameworks. J Phys Chem Lett 2010;1(1):445–9. 链接1

[10] Landers J, Gor GY, Neimark AV. Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Asp 2013;437:3–32. 链接1

[11] Monson PA. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model. Langmuir 2008;24(21):12295–302. 链接1

[12] Monson PA. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater 2012;160:47–66. 链接1

[13] Ravikovitch PI, Neimark AV. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 2002;18(5):1550–60. 链接1

[14] Ravikovitch PI, Neimark AV. Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 2002;18(25):9830–7. 链接1

[15] Thommes M, Smarsly BM, Groenewolt M, Ravikovitch PI, Neimark AV. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 2006;22 (2):756–64. 链接1

[16] Van Bemmelen JM. Die Absorption. Des Wasser in den Kolloïden, besonders in dem Gel der Kieselsäure. Anorg Allg Chem 1897;13(1):233–356. German. 链接1

[17] Everett DH. The solid-gas interface. New York: Marcel Dekker; 1967. 链接1

[18] Cychosz KA, Guo X, Fan W, Cimino R, Gor GY, Tsapatsis M, et al. Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir 2012;28 (34):12647–54. 链接1

[19] Cimino R, Cychosz KA, Thommes M, Neimark AV. Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf A Physicochem Eng Asp 2013;437:76–89. 链接1

[20] Galarneau A, Desplantier D, Dutartre R, Di Renzo F. Micelle-templated silicates as a test bed for methods of mesopore size evaluation. Microporous Mesoporous Mater 1999;27(2–3):297–308. 链接1

[21] Rouquerol F, Rouquerol J, Peres C, Grillet Y, Boudellal M. Calorimetric study of nitrogen and argon adsorption on porous silicas. In: Gregg SJ, Sing KSW, Stoeckli HF, editors. Characterization of porous solids. Luton: The Society of Chemical Industry; 1979. p. 107–16. 链接1

[22] Jelinek L, Kovats E. True surface area from nitrogen adsorption experiments. Langmuir 1994;10(11):4225–31. 链接1

[23] Thommes M, Köhn R, Fröba M. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl Surf Sci 2002;196(1–4):239–49. 链接1

[24] Lastoskie C, Gubbins KE, Quirke N. Pore size distribution analysis of microporous carbons: a density functional theory approach. J Phys Chem 1993;97(18):4786–96. 链接1

[25] Olivier JP, Conklin WB, Szombathely MV. Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud Surf Sci Catal 1994;87:81–9. 链接1

[26] Neimark AV. The method of indeterminate Lagrange multipliers in nonlocal density functional theory. Langmuir 1995;11(10):4183–4. 链接1

[27] Moellmer J, Celer EB, Luebke R, Cairns AJ, Staudt R, Eddaoudi M, et al. Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF. Microporous Mesoporous Mater 2010;129 (3):345–53. 链接1

[28] Bandosz TJ, Briggs MJ, Gubbins KE, Hattori Y, Iiyama T, Kaneko K, et al. Molecular models of porous carbons. In: Radovic LR, editor. Chemistry & physics of carbon. New York: Marcel Dekker; 2003. p. 41–228. 链接1

[29] Thomson KT, Gubbins KE. Modeling structural morphology of microporous carbons by reverse monte carlo. Langmuir 2000;16(13):5761–73. 链接1

[30] Nguyen TX, Cohaut N, Bae JS, Bhatia SK. New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir 2008;24(15):7912–22. 链接1

[31] Soares Maia DA, de Oliveria JCA, Toso JP, Sapag K, López RH, Azevedo DCS, et al. Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 2011;17 (5):853–61. 链接1

[32] Jagiello J, Olivier JP. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J Phys Chem C 2009;113(45):19382–5. 链接1

[33] Neimark AV, Lin Y, Ravikovitch PI, Thommes M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 2009;47(7):1617–28. 链接1

[34] Gor GY, Thommes M, Cychosz KA, Neimark AV. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 2012;50(4):1583–90. 链接1

[35] Hu X, Radosz M, Cychosz KA, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol 2011;45(16):7068–74.

[36] Cairns AJ, Eckert J, Wojtas L, Thommes M, Wallacher D, Georgiev PA, et al. Gaining insights on the H2-sorbent interactions: robust soc-MOF platform as a case study. Chem Mater 2016;28(20):7353–61. 链接1

[37] Wu H, Thibault CG, Wang H, Cychosz KA, Thommes M, Li J. Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous Mesoporous Mater 2016;219: 186–9. 链接1

[38] Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications. Energy Environ Sci 2013;6(10):2839–55. 链接1

[39] Sevilla M, Valle-Vigón P, Fuertes AB. N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 2011;21(14):2781–7. 链接1

[40] Ashourirad B, Arab P, Islamoglu T, Cychosz KA, Thommes M, El-Kaderi HM. A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents. J Mater Chem A Mater Energy Sustain 2016;4(38):14693–702. 链接1

相关研究