期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第4期 doi: 10.1016/j.eng.2018.07.007

人工湿地进行废水生态化处理的钢铁园区水网络优化

a Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

b The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

c School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

收稿日期: 2017-12-14 修回日期: 2018-04-26 录用日期: 2018-04-28 发布日期: 2018-07-17

下一篇 上一篇

摘要

传统工业优化往往仅限定在工业系统内,限制了优化的潜力。适当扩展系统的边界,将有助于对复杂系统进行更为精确的分析,从而提高工业系统的效率和盈利能力。自然生态系统在物质和能源短缺的情况下,已经进化了数十亿年,生态学家发展了众多的分析工具和指标来表征生态系统的基本运行原理。这些原理为克服传统工业优化技术的瓶颈提供了新的解决方案。具体地说,基于生态原理,通过模仿生态系统中发现的基本功能角色,工业系统可以实现类生态系统的高效组织运行。本文对中国典型钢铁企业的水网络分别采用传统优化模型与基于生态原理驱动的改进模型进行了优化。工业实例研究表明,采用传统优化模型的水网络优化后,可实现新水消耗、废水排放、综合用水成本分别降低23%、29% 和20%;采用基于生态原理驱动的改进模型,水网络优化后,则可使新水用量和综合用水成本进一步降低21%和25%,并实现废水零排放。研究结果表明,基于生态原理驱动的改进优化模型更有利于实现工业系统的可持续发展。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] World Economic Forum. Global risks 2014. 9th ed. Geneva: World Economic Forum; 2014. 链接1

[ 2 ] Kelly P. What to do when we run out of water. Nat Clim Change 2014;4 (5):314–6. 链接1

[ 3 ] Margolis N, Brindle R. Energy and environmental profile of the US iron and steel industry. Report. Washington, DC: US Department of Energy, Office of Industrial Technologies; 2000. 链接1

[ 4 ] Ma FY. Corrosive effects of chlorides on metals. In: Cerasale DL, editor. Pitting corrosion. Troy: Delve Publishing LLC; 2015. p. 140–78.

[ 5 ] Mitsch WJ, Jørgensen SE. Ecological engineering: a field whose time has come. Ecol Eng 2003;20(5):363–77. 链接1

[ 6 ] Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, Hastings A, et al. Detritus, trophic dynamics and biodiversity. Ecol Lett 2004;7(7):584–600. 链接1

[ 7 ] Layton A, Bras B, Weissburg M. Industrial ecosystems and food webs: an expansion and update of existing data for eco-industrial parks and understanding the ecological food webs they wish to mimic. J Ind Ecol 2016;20(1):85–98. 链接1

[ 8 ] Layton A, Bras B, Weissburg M. Improving performance of eco-industrial parks. Int J Sustainable Eng 2017;10(4–5):250–9. 链接1

[ 9 ] Barcelo J, Poschenrieder C. Phytoremediation: principles and perspectives. Contrib Sci 2003;2(3):333–44. 链接1

[10] Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryn´ ski K. Phytoextraction crop disposal—an unsolved problem. Environ Pollut 2004;128(3):373–9. 链接1

[11] Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK. Halophytes as bioenergy crops. Front Plant Sci 2016;7:1372. 链接1

[12] Jezzowski J. Review of water network design methods with literature annotations. Ind Eng Chem Res 2010;49(10):4475–516. 链接1

[13] Faria DC, Bagajewicz MJ. On the appropriate modeling of process plant water systems. AIChE J 2010;56(3):668–89. 链接1

[14] Ahmetovic´ E, Grossmann IE. Global superstructure optimization for the design of integrated process water networks. AIChE J 2011;57(2):434–57. 链接1

[15] Grossmann IE, Martin M, Yang L. Review of optimization models for integrated process water networks and their application to biofuel processes. Curr Opin Chem Eng 2014;5:101–9. 链接1

[16] Huang C, Chang C, Ling H. A mathematical programming model for water usage and treatment network design. Ind Eng Chem Res 1999;38(7):2666–79. 链接1

[17] Chew IML, Tan R, Ng DKS, Foo DCY, Majozi T, Gouws J. Synthesis of direct and indirect interplant water network. Ind Eng Chem Res 2008;47 (23):9485–96. 链接1

[18] Chew IML, Thillaivarrna SL, Tan RR, Foo DCY. Analysis of inter-plant water integration with indirect integration schemes through game theory approach: Pareto optimal solution with interventions. Clean Technol Environ Policy 2011;13(1):49–62. 链接1

[19] Lovelady EM, El-Halwagi MM. Design and integration of eco-industrial parks for managing water resources. Environ Prog Sustainable Energy 2009;28 (2):265–72. 链接1

[20] Lovelady EM, El-Halwagi MM, Chew IML, Ng DKS, Foo DCY, Tan RR. A property- integration approach to the design and integration of eco-industrial parks. In: Proceedings of the 7th International Conference on Foundations of Computer-aided Process Design; 2009 Jun 7–12; Breckenridge, CO, USA; 2009. 链接1

[21] Nobel CE, Allen DT. Using geographic information systems (GIS) in industrial water reuse modelling. Process Saf Environ Prot 2000;78(4):295–303. 链接1

[22] Tiu BTC, Cruz DE. An MILP model for optimizing water exchanges in eco- industrial parks considering water quality. Resour Conserv Recycl 2017;119:89–96. 链接1

[23] Farzi A, Borghei SM, Vossoughi M. The use of halophytic plants for salt phytoremediation in constructed wetlands. Int J Phytorem 2017;19 (7):643–50. 链接1

[24] Xu J, Zhao G, Huang X, Guo H, Liu W. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater. Int J Phytorem 2017;19(3):262–9. 链接1

[25] Gómez Cerezo R, Suárez ML, Vidal-Abarca MR. The performance of a multi- stage system of constructed wetlands for urban wastewater treatment in a semiarid region of SE Spain. Ecol Eng 2001;16(4):501–17. 链接1

[26] Mietto A. Phytoremediation efficiency: assessment of removal processes and hydraulic performance in constructed wetlands [dissertation]. Venice: Università Ca’ Foscari di Venezia; 2010. 链接1

[27] Balnokin Y, Nikolai M, Larisa P, Alexander T, Sofya U, Christophe L, et al. Use of halophytic plants for recycling NaCl in human liquid waste in a bioregenerative life support system. Adv Space Res 2010;46(6):768–74. 链接1

[28] Lewandowski I, Kicherer A. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus giganteus. Eur J Agron 1997;6(3–4):163–77. 链接1

[29] Ventura Y, Sagi M. Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 2013;92:144–53. 链接1

相关研究