期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第4期 doi: 10.1016/j.eng.2018.07.010

基于共点映射的无人车可行驶区域检测方法

a Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an 710049, China

b National Engineering Laboratory for Visual Information Processing and Applications, Xi’an Jiaotong University, Xi’an 710049, China

收稿日期: 2017-04-06 修回日期: 2017-11-13 录用日期: 2017-12-28 发布日期: 2018-07-18

下一篇 上一篇

摘要

城市交通场景的随机性和复杂性使得无人车的可行驶区域检测成为难题。受人类驾驶行为的启发,本文提出了一种无人车的可行驶区域检测的新方法,该方法利用了单目相机得到的像素信息和激光传感器得到的空间点云信息的融合,与共线中的双射类似,该方法引入了“共点映射”的新概念,其定义为:将来自激光雷达的点映射到图像分割边缘上的点的双射。该方法通过将障碍物与超像素融合得到初始可行驶区域,并基于该初始可行驶区域,利用自学习模型定位候选可行驶区域。此外,为了提升算法的鲁棒性,本文融合了四种特征,特别提出了一种称为可行驶程度(drivable degree, DD)的特征,该特征定义了激光点的可行驶程度。经过自学习四种特征得到初始可行驶区域之后,利用贝叶斯框架建立可行驶区域的最终概率图模型。本文的方法没有引入强假设条件,也不需要训练过程,但在ROAD-KITTI benchmark 测试中获得了最佳的性能。实验结果表明,该方法是一种泛化性强且有效的可行驶区域的检测方法。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Bar Hillel A, Lerner R, Levi D, Raz G. Recent progress in road and lane detection: a survey. Mach Vis Appl 2014;25(3):727–45. 链接1

[ 2 ] Zhang G, Zheng N, Cui D, Yang G. An efficient road detection method in noisy urban environment. In: 2009 IEEE Intelligent Vehicles Symposium Proceedings; 2009. P. 556–561. 链接1

[ 3 ] Cong Y, Peng JJ, Sun J, Zhu LL, Tang YD. V-disparity based UGV obstacle detection in rough outdoor terrain. Acta Autom Sin 2010;36(5):667–73. 链接1

[ 4 ] Lee DT, Schachter BJ. Two algorithms for constructing a delaunay triangulation. Int J Comput Inf Sci 1980;9(3):219–42. 链接1

[ 5 ] Fritsch J, Kuehnl T, Geiger A. A new performance measure and evaluation benchmark for road detection algorithms. In: Proceedings of International Conference on Intelligent Transportation Systems (ITSC); 2013 Oct 6–9; The Hague, the Netherlands. New York: IEEE; 2013. 链接1

[ 6 ] Tan C, Hong T, Chang T, Shneier M. Color model-based real-time learning for road following. In: Proceedings of Intelligent Transportation Systems Conference. New York: IEEE; 2006. p. 939–44. 链接1

[ 7 ] Rotaru C, Graf T, Zhang J. Color image segmentation in HSI space for automotive applications. J Real-Time Image Process 2008;3(4):311–22. 链接1

[ 8 ] Jau UL, Teh CS, Ng GW. A comparison of RGB and HSI colour segmentation in real-time video images: a preliminary study on road sign detection. In: Proceedings of the 2008 International Symposium on Information Technology; 2008 Aug 26–28; Kuala Lumpur, Malaysia. New York: IEEE; 2008. 链接1

[ 9 ] Finlayson GD, Hordley SD, Lu C, Drew MS. On the removal of shadows from images. IEEE Trans Pattern Anal Mach Intell 2006;28(1):59–68.

[10] Maddern W, Stewart A, McManus C, Upcroft B, Churchill W, Newman P. Illumination invariant imaging: applications in robust vision-based localisation, mapping and classification for autonomous vehicles. Proceedings of the Visual Place Recognition in Changing Environments Workshop; 2014 Dec 5–10; Hong Kong, China. New York: IEEE; 2014. 链接1

[11] Alvarez JM, Gevers T, LeCun Y, Lopez AM. Road scene segmentation from a single image. In: Proceedings of the 12th European Conference on Computer Vision: Volume Part VII; 2012 Oct 7–13; Florence, Italy. Heidelberg: Springer- Verlag Berlin; 2012. p. 376–89.

[12] Teichmann M, Weber M, Zoellner M, Cipolla B, Urtasun R. MultiNet: real-time joint semantic reasoning for autonomous driving. 2016. arXiv:1612.07695. 链接1

[13] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2017;64(6):64–90. 链接1

[14] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:1409.1556. 链接1

[15] Badrinarayanan V, Handa A, Cipolla R. Segnet: a deep convolutional encoder- decoder architecture for robust semantic pixel-wise labelling. 2015. arXiv:1505.07293. 链接1

[16] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7–12; Boston, MA, USA. New York: IEEE; 2015. p. 3431–40. 链接1

[17] Cong Y, Liu J, Yuan J, Luo J. Self-supervised online metric learning with low rank constraint for scene categorization. IEEE Trans Image Process 2013;22 (8):3179–91. 链接1

[18] Cong Y, Liu J, Fan B, Zeng P, Yu H, Luo J. Online similarity learning for big data with overfitting. IEEE Trans Big Data 2017;4(1):78–89. 链接1

[19] Alvarez JM. Gevers T. Lopez AM. 3D scene priors for road detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010; 2010 Jun 13–18; San Francisco, CA, USA. New York; 2010. P. 57–64. 链接1

[20] Nan Z, Wei P, Xu L, Zheng N. Efficient lane boundary detection with spatial- temporal knowledge filtering. Sensors 2016;16(8):1276. 链接1

[21] Hoiem D, Efros AA, Hebert M. Recovering surface layout from an image. Int J Comput Vis 2007;75(1):151–72. 链接1

[22] Kong H, Audibert J, Ponce J. Vanishing point detection for road detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition; 2009 Jun 20–25; Miami, FL, USA. New York: IEEE; 2009. 链接1

[23] Sivic J, Kaneva B, Torralba A, Avidan S, Freeman WT. Creating and exploring a large photorealistic virtual space. In: Proceedings of 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops; 2008 Jun 23–28; Anchorage, AK, USA. New York: IEEE; 2008. 链接1

[24] Montemerlo M, Becker J, Bhat S, Dahlkamp H, Dolgov D, Ettinger S, et al. Junior: the Stanford entry in the urban challenge. J Field Robot 2008;25 (9):569–97. 链接1

[25] Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, et al. Stanley: the robot that won the DARPA grand challenge. J Field Robot 2006;23 (9):661–92. 链接1

[26] Urmson C, Anhalt J, Bagnell D, Baker C, Bittner R, Clark MN, et al. Autonomous driving in urban environments: boss and the urban challenge. J Field Robot 2008;25(8):425–66. 链接1

[27] Neidhart H, Sester M. Extraction of building ground plans from LiDAR data. Int Arch Photogramm Remote Sens Spat Inf Sci 2008;37(Pt 2):405–10. 链接1

[28] Hu X, Rodriguez FSA, Gepperth A. A multi-modal system for road detection and segmentation. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings; 2014 Jun 8–11; Dearborn, MI, USA. New York: IEEE; 2014. p. 1365–70. 链接1

[29] Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 1981;24(6):381–95. 链接1

[30] Wellington C, Courville A, Stentz AT. A generative model of terrain for autonomous navigation in vegetation. Int J Robot Res 2006;25(12):1287–304. 链接1

[31] Klasing K, Wollherr D, Buss M. Realtime segmentation of range data using continuous nearest neighbors. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation; 2008 May 13–19; Kobe, Japan. New York: IEEE; 2009. p. 2431–6. 链接1

[32] Diebel J, Thrun S. An application of Markov random fields to range sensing. Adv Neural Inf Process Syst 2005;18:291–8. 链接1

[33] Shotton J, Winn J, Rother C, Criminisi A. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Proceedings of the 9th European Conference on Computer Vision: Volume Part I; 2006 May 7–13; Graz, Austria. Berlin: Springer; 2006. p. 1–15. 链接1

[34] Xiao L, Dai B, Liu D, Tingbo H, Tao W. CRF based road detection with multi- sensor fusion. In: Proceedings of 2015 IEEE Intelligent Vehicles Symposium (IV); 2015 Jun 28–Jul 1; Seoul, Korea. New York: IEEE; 2015. p. 192–8.

[35] Huang W, Gong X, Yang MY. Joint object segmentation and depth upsampling. IEEE Signal Process Lett 2015;22(2):192–6. 链接1

[36] Alvarez AJM, Lopez AM. Road detection based on illuminant invariance. IEEE Trans Intell Transp Syst 2011;12(1):184–93. 链接1

[37] Shinzato PY, Wolf DF, Stiller C. Road terrain detection: avoiding common obstacle detection assumptions using sensor fusion. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings; 2014 Jun 8–11; Dearvorn, MI, USA. New York: IEEE; 2014. p. 687–92. 链接1

[38] Ren X, Malik J. Learning a classification model for segmentation. In: Proceedings of the 9th IEEE International Conference on Computer Vision; 2003 Oct 13–16; Nice, France. New York: IEEE; 2003. p. 10–7.

[39] Dollár P, Zitnick CL. Structured forests for fast edge detection. In: Proceedings of 2013 IEEE International Conference on Computer Vision; 2013 Dec 1–8; Sydney, NSW, Australia. New York: IEEE; 2013. p. 1841–8. 链接1

[40] Zitnick CL, Dollár P. Edge boxes: locating object proposals from edges. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer Vision—ECCV 2014; 2014 Sep 6–12; Zurich, Switzerland. Cham: Springer; 2014.p. 391–405. 链接1

[41] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 2012;34(11):2274–82. 链接1

[42] Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: the KITTI dataset. Int J Robot Res 2013;32(11):1231–7. 链接1

[43] Hu X, Rodriguez FSA, Gepperth A. A multi-modal system for road detection and segmentation. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings. New York: IEEE; 2014. p. 1365–70. 链接1

[44] Wang T, Zheng N, Xin J, Ma Z. Integrating millimeter wave radar with a monocular vision sensor for on-road obstacle detection applications. Sensors 2011;11(9):8992–9008. 链接1

[45] Liu J, Gong X. Guided depth enhancement via anisotropic diffusion. In: Proceedings of the 14th Pacific-Rim Conference on Multimedia; 2013 Dec 13– 16; Nanjing, China. Berlin: Springer; 2013. p. 408–17. 链接1

相关研究