期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2018.09.007

通过蛋白质工程提高聚酯水解酶对PET 塑料的降解效率

a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China

收稿日期: 2018-03-02 修回日期: 2018-05-18 录用日期: 2018-09-14 发布日期: 2018-09-21

下一篇 上一篇

摘要

来自Ideonella sakaiensis 的聚对苯二甲酸乙二醇酯水解酶(PETase)在室温下具有很强的降解聚对苯二甲酸乙二醇酯(PET)的能力,因此被认为是解决聚酯塑料污染问题的潜在工具。在本研究中,基于PETase 和底物2PET 结合时的相互作用模型,分析了PETase 与底物2PET 之间的相互作用,从而对底物结合沟壑周围的六个关键残基进行改造。为了更加快速地筛选突变体酶的活性,本研究利用无细胞蛋白表达体系对设计的PETase 突变体进行高通量的表达和验证。最终发现三种突变体(R61A、L88F 和I179F)的酶活性相比野生型分别提高了1.4 倍、2.1 倍和2.5 倍。其中,I179F突变体的酶活性最高,降解效率为22.5 mg·μmol–1·d–1。因此,本研究通过蛋白质工程对PETase 的关键疏水位点进行设计和改造,获得了降解效果提高的酶突变体,并进一步证实了其生物降解塑料的潜力。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Fan X, Chung JY, Lim YX, Li Z, Loh XJ. Review of adaptive programmable materials and their bioapplications. ACS Appl Mater Interfaces 2016;8 (49):33351–70. 链接1

[ 2 ] Li Z, Loh XJ. Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9(3):e1429. 链接1

[ 3 ] Fan X, Tan BH, Li Z, Loh XJ. Control of PLA stereoisomers-based polyurethane elastomers as highly efficient shape memory materials. ACS Sustain Chem Eng 2017;5(1):1217–27. 链接1

[ 4 ] Li Z, Liu X, Chen X, Chua MX, Wu Y. Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer. Mater Sci Eng: C 2017;76:66–72. 链接1

[ 5 ] Fan X, Zhang W, Hu Z, Li Z. Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. J Mater Chem B Mater Biol Med 2017;5(5):1062–72. 链接1

[ 6 ] Neufeld L, Stassen F, Sheppard R, Gilman T. The new plastics economy: rethinking the future of plastics.ecologny. World Economic Forum; 2016. Report No.: 080116.

[ 7 ] Al-Sabagh AM, Yehia FZ, Eshaq G, Rabie AM, ElMetwally AE. Greener routes for recycling of polyethylene terephthalate. Egyp Jl Petrol 2016;25(1):53–64. 链接1

[ 8 ] Ruvolo-Filho A, Curti PS. Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly(ethylene terephthalate) in nonaqueous ethylene glycol solution. Ind Eng Chem Res 2006;45(24):7985–96. 链接1

[ 9 ] López-Fonseca R, Duque-Ingunza I, de Rivas B, Flores-Giraldo L, Gutiérrez-Ortiz JI. Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem Eng J 2011;168(1):312–20. 链接1

[10] Giannotta G, Po R, Cardi N, Tampellini E, Occhiello E, Garbassi F, et al. Processing effects on poly(ethylene terephthalate) from bottle scraps. Polym Eng Sci 1994;34(15):1219–23. 链接1

[11] Geyer B, Lorenz G, Kandelbauer A. Recycling of poly(ethylene terephthalate)—a review focusing on chemical methods. Express Polym Lett 2016;10(7):559–86. 链接1

[12] Sinha V, Patel MR, Patel JV. PET waste management by chemical recycling: a review. J Polym Environ 2010;18(1):8–25. 链接1

[13] Webb HK, Arnott J, Crawford RJ, Ivanova EP. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) 2012;5(1):1–18.

[14] Wei R, Zimmermann W. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol 2017;10 (6):1302–7. 链接1

[15] Müller RJ, Schrader H, Profe J, Dresler K. Deckwer WD. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T.fusca. Macromol Rapid Commun 2005;26(17):1400–5. 链接1

[16] Silva CM, Carneiro F, O’Neill A, Fonseca LP, Cabral JS, Guebitz G, et al. Cutinase—a new tool for biomodification of synthetic fibers. J Polym Sci A Polym Chem 2005;43(11):2448–50. 链接1

[17] Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 2011;44 (12):4632–40. 链接1

[18] Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016;351(6278):1196–9. 链接1

[19] Herrero Acero E, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A, Steinkellner G, et al. Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol Bioeng 2013;110 (10):2581–90. 链接1

[20] Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, et al. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng 2016;113(8):1658–65. 链接1

[21] Silva C, Da S, Silva N, Matamá T, Araújo R, Martins M, et al. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. Biotechnol J 2011;6(10):1230–9. 链接1

[22] Katzen F, Chang G, Kudlicki W. The past, present and future of cell-free protein synthesis. Trends Biotechnol 2005;23(3):150–6. 链接1

[23] Lutz S. Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol 2010;21(6):734–43. 链接1

[24] Bornscheuer UT, Pohl M. Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 2001;5(2):137–43. 链接1

[25] Murthy TVS, Wu W, Qiu QQ, Shi Z, LaBaer J, Brizuela L. Bacterial cell-free system for high-throughput protein expression and a comparative analysis of Escherichia coli cell-free and whole cell expression systems. Protein Expr Purif 2004;36(2):217–25. 链接1

[26] Sawasaki T, Ogasawara T, Morishita R, Endo Y. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci USA 2002;99 (23):14652–7. 链接1

[27] Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, et al. Human protein factory for converting the transcriptome into an in vitroexpressed proteome. Nat Methods 2008;5(12):1011–7. 链接1

[28] Han X, Liu W, Huang J, Ma J, Zheng Y, Ko T, et al. Structural insight into catalytic mechanism of PET hydrolase. Nat Commun 2017;8(1):2106. 链接1

[29] Sulaiman S, Yamato S, Kanaya E, Kim J, Koga Y, Takano K, et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 2012;78(5):1556–62. 链接1

[30] Jewett MC, Swartz JR. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 2004;86(1):19–26. 链接1

[31] Kim DM, Choi CY. A semicontinuous prokaryotic coupled transcription/ translation system using a dialysis membrane. Biotechnol Prog 1996;12 (5):645–9. 链接1

[32] Kwon Y, Jewett MC. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 2015;5:8663. 链接1

[33] Shin J, Noireaux V. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol 2012;1(1):29–41. 链接1

[34] Ribitsch D, Heumann S, Trotscha E, Herrero Acero E, Greimel K, Leber R, et al. Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnol Prog 2011;27(4):951–60. 链接1

[35] Joo S, Cho IJ, Seo H, Son HF, Sagong H, Shin TJ, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat Commun 2018;9(1):382. 链接1

相关研究