期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2018.10.006

用于润湿性控制的Stavax 钢基材的皮秒激光表面纹理处理

a Singapore Institute of Manufacturing Technology (SIMTech), A*STAR, Singapore 138634, Singapore

b SIMTech-NTU Joint Laboratory (Precision Machining), Nanyang Technological University, Singapore 639798, Singapore

c School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China

收稿日期: 2018-04-24 修回日期: 2018-09-30 录用日期: 2018-10-29 发布日期: 2018-11-01

下一篇 上一篇

摘要

在本文中,笔者采用皮秒激光来制造Stavax钢基板的表面纹理,此钢基板为制造各种高分子聚合物产品模具的关键材料。在Stavax 钢基板上主要有3种类型的表面纹理:周期性波纹、微凸块的双尺度分层二维阵列以及有纳米波纹的微坑阵列。经激光处理后的Stavax钢基板表面的润湿性从其原始的亲水性转变为疏水性,甚至在暴露于空气后具有超疏水性。研究结果清晰地表明,此超疏水性主要是由于表面纹理造成的。超快激光诱导的催化效果可能在改变表面化学性质方面起到次要作用,从而降低了表面能。随后,将金属磨具表面上的经激光处理的表面纹理通过高分子聚合物注射成型工艺复制到聚丙烯基底。由此,聚丙烯模具表面的润湿性从原始的亲水性变成疏水性。此开发工艺在改善塑料制品的湿润控制性和易清洗性方面具有一定潜能。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Johnson RE Jr, Dettre RH, Brandreth DA. Dynamic contact angles and contactangle hysteresis. J Colloid Interface Sci 1977;62(2):205–12. 链接1

[ 2 ] Wenzel RN. Surface roughness and contact angle. J Phys Colloid Chem 1949;53 (9):1466–7. 链接1

[ 3 ] Cassie BD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc 1944;40:546–50. 链接1

[ 4 ] Li J, Fu J, Cong Y, Wu Y, Xue LJ, Han YC. Macroporous fluoropolymeric films templated by silica colloidal assembly: a possible route to super-hydrophobic surfaces. Appl Surf Sci 2006;252(6):2229–34. 链接1

[ 5 ] Kim SH, Kim JH, Kang BK, Uhm HS. Superhydrophobic CFx coating via in-line atmospheric RF plasma of He-CF4-H2. Langmuir 2005;21(26):12213–7. 链接1

[ 6 ] Teshima K, Sugimura H, Inoue Y, Takai O, Takano A. Transparent ultra waterrepellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl Surf Sci 2005;244(1– 4):619–22. 链接1

[ 7 ] Wagterveld RM, Berendsen CWJ, Bouaidat S, Jonsmann J. Ultralow hysteresis superhydrophobic surfaces by excimer laser modification of SU-8. Langmuir 2006;22(26):10904–8. 链接1

[ 8 ] Wong W, Chan K, Yeung KW, Lau KS. Surface structuring of poly(ethylene terephthalate) by UV excimer laser. J Mater Process Technol 2003;132(1– 3):114–8. 链接1

[ 9 ] Kulinich SA, Farzaneh M. Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers. Surf Sci 2004;573 (3):379–90. 链接1

[10] Schondelmaier D, Cramm S, Klingeler R, Morenzin J, Zilkens C, Eberhardt W. Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir 2002;18(16):6242–5. 链接1

[11] Vorobyev Y, Guo CL. Multifunctional surfaces produced by femtosecond laser pulses. J Appl Phys 2015;117(3):033103. 链接1

[12] Kietzig AM, Hatzikiriakos SG, Englezos P. Patterned superhydrophobic metallic surfaces. Langmuir 2009;25(8):4821–7. 链接1

[13] Wu PH, Cheng CW, Chang CP, Wu TM, Wang JK. Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds. J Micromech Microeng 2011;21(11):115032. 链接1

[14] Tang M, Shim V, Pan ZY, Choo YS, Hong MH. Laser ablation of metal substrates for super-hydrophobic effect. J Laser Micro Nanoeng 2011;6(1):6–9. 链接1

[15] Kietzig AM, Mirvakili MN, Kamal S, Englezos P, Hatzikiriakos SG. Laserpatterned super-hydrophobic pure metallic substrates: Cassie to Wenzel wetting transitions. J Adhes Sci Technol 2011;25:2789–809. 链接1

[16] Moradi S, Kamal S, Englezos P, Hatzikiriakos SG. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity. Nanotechnology 2013;24(41):415302. 链接1

[17] Her TH, Finlay RJ, Wu C, Deliwala S, Mazur E. Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett 1998;73(12):1673–5. 链接1

[18] Wang B, Wang X, Zheng H, Lam YC. Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation. Nanomaterials 2015;5 (3):1442–53. 链接1

[19] Toosi SF, Moradi S, Kamal S, Hatzikiriakos SG. Superhydrophobic laser ablated PTFE substrates. Appl Surf Sci 2015;349:715–23.

[20] Li ZL, Chu PL, Zheng HY, Lim GC. Process development of laser machining of carbon fibre reinforced plastic composites. In: Proceedings of the International Congress on Applications of Lasers & Electro-Optics (ICALEO); 2008 Oct 20–23; Temecula, CA, USA; 2008. 链接1

[21] Long J, Zhong M, Fan P, Gong D, Zhang H. Wettability conversion of ultrafast laser structured copper surface. J Laser Appl 2015;27(S2):S29107. 链接1

[22] Wang XC, Wang B, Xie H, Zheng HY, Lam YC. Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity. J Phys D Appl Phys 2018;51(11):115305. 链接1

[23] Racˇiukaitis G, Brikas M, Gecˇys P, Voisiat B, Gedvilas M. Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high? J Laser Micro Nanoeng 2009;4(3):186–91. 链接1

[24] Zhou GS, Fauchet PM, Siegman AE. Growth of spontaneous periodic surfacestructures on solids during laser illumination. Phys Rev B Condens Matter 1982;26(10):5366–81. 链接1

[25] Preston JS, Sipe JE, Sipe JE, van Driel HM. Pattern formation during laser melting of silicon. Phys Rev B Condens Matter 1989;40(6):3942–54. 链接1

[26] Isenor NR. CO2 laser-produced ripple patterns on NixP1x surfaces. Appl Phys Lett 1977;31:148–50. 链接1

[27] MillerJC,HaglundRFJ,editors.Laserablationanddesorption.Amsterdam:Elsevier Inc.; 1997.

[28] Tamaura Y, Tabata M. Complete reduction of carbon dioxide to carbon using cation-excess magnetite. Nature 1990;346(6281):255–6. 链接1

[29] Zhang CL, Li S, Wang LJ, Wu TH, Peng SY. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite: I. preparation, characterization of magnetite, and its activity of decomposing carbon dioxide. Mater Chem Phys 2000;62(1):44–51.

[30] Zhang CL, Li S, Wang LJ, Wu TH, Peng SY. Studies on the decomposing carbon dioxide into carbon with oxygen-deficient magnetite: II. the effects of properties of magnetite on activity of decomposition CO2 and mechanism of the reaction. Mater Chem Phys 2000;62(1):52–61 链接1

相关研究