期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第2期 doi: 10.1016/j.eng.2018.11.025

心理疲劳的神经机制——脑连接组的新见解

a Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai
200092, China

b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,
Zhejiang, 310000, China

c Department of Neurosurgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang,
312000, China

d Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, 117456, Singapore

收稿日期: 2018-05-24 修回日期: 2018-10-15 录用日期: 2018-11-08 发布日期: 2019-02-23

下一篇 上一篇

摘要

在长时间的认知任务中保持注意力集中通常会引起高水平的心理疲劳。心理疲劳可以描述为一种主观疲惫的感觉,通常表现为对眼前任务参与感的降低,客观上体现为与任务相关的认知、行为执行能力和表现降低。为了有效地减少实际工作中由心理疲劳引起的不良后果,众多来自不同领域的研究者付出了持续不断的努力以进一步理解其潜在的神经机制。其中神经工程和人因工程领域的相关研究者提出了通过采用先进的脑影像技术手段,对心理疲劳产生过程中的神经活动变化进行定量分析,从而揭示其作用机理的研究思路。本文首先对有关心理疲劳的神经影像学研究成果进行了介绍,并结合脑连接图谱等新的影像学证据对这些研究中广泛使用的单变量分析方法的缺点进行了讨论。近10年来,越来越多的研究认为心理疲劳与大脑各区域之间功能连接的重组有关,而图论分析方法的提出也为定量分析功能连接重组提供了新的视角。针对这一新的研究趋势,本文较为全面地概述了心理疲劳的脑连接相关研究成果,归纳总结了多变量脑功能连接分析方法在心理疲劳神经机制研究中的意义。目前这一新兴研究领域的相关研究成果还相对较少,但脑连接组的应用不仅有助于阐明神经工效学这一新生领域中心理疲劳的潜在神经机制,而且在不久的将来有望实现心理疲劳的自动检测及分类,从而避免疲劳相关的不良后果。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Mackworth NH. The breakdown of vigilance during prolonged visual search. Q J Exp Psychol 1948;1(1):6–21. 链接1

[ 2 ] Grier RA, Warm JS, Dember WN, Matthews G, Galinsky TL, Szalma JL, et al. The vigilance decrement reflects limitations in effortful attention, not mindlessness. Hum Factors 2003;45(3):349–59. 链接1

[ 3 ] Van der Linden D, Eling P. Mental fatigue disturbs local processing more than global processing. Psychol Res 2006;70(5):395–402. 链接1

[ 4 ] Davies DR, Parasuraman R. The psychology of vigilance. London: Academic Press; 1982. 链接1

[ 5 ] Tucker P, Folkard S, Macdonald I. Rest breaks and accident risk. Lancet 2003;361(9358):680. 链接1

[ 6 ] Ricci JA, Chee E, Lorandeau AL. Berger J. Fatigue in the U.S. workforce: prevalence and implications for lost productive work time. J Occup Environ Med 2007;49(1):1–10. 链接1

[ 7 ] Boksem MA, Tops M. Mental fatigue: costs and benefits. Brain Res Brain Res Rev 2008;59(1):125–39. 链接1

[ 8 ] Landrigan CP, Rothschild JM, Cronin JW, Kaushal R, Burdick E, Katz JT, et al. Effect of reducing interns’ work hours on serious medical errors in intensive care units. N Engl J Med 2004;351(18):1838–48. 链接1

[ 9 ] Arnedt JT, Owens J, Crouch M, Stahl J, Carskadon MA. Neurobehavioral performance of residents after heavy night call vs after alcohol ingestion. JAMA 2005;294(9):1025–33. 链接1

[10] Dodge R. The laws of relative fatigue. Psychol Rev 1917;24(2):89–113. 链接1

[11] Hockey GRJ. A motivational control theory of cognitive fatigue. In: Ackerman PL, editor. Cognitive fatigue: multidisciplinary perspectives on current research and future applications. Washington: American Psychological Association; New York: IEEE; 2011. p. 167–87. 链接1

[12] Manly T, Robertson IH, Galloway M, Hawkins K. The absent mind: further investigations of sustained attention to response. Neuropsychologia 1999;37 (6):661–70. 链接1

[13] Robertson IH, Manly T, Andrade J, Baddeley BT, Yiend J. ‘Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 1997;35(6):747–58. 链接1

[14] Sanders AF. A summary of resource theories from a behavioral perspective. Biol Psychol 1997;45(1–3):5–18. 链接1

[15] Warm JS, Parasuraman R, Matthews G. Vigilance requires hard mental work and is stressful. Hum Factors 2008;50(3):433–41. 链接1

[16] Kurzban R, Duckworth A, Kable JW, Myers J. An opportunity cost model of subjective effort and task performance. Behav Brain Sci 2013;36(6):661–79. 链接1

[17] Sporns O. The human connectome: a complex network. Ann N Y Acad Sci 2011;1224(1):109–25. 链接1

[18] Boksem MA, Meijman TF, Lorist MM. Effects of mental fatigue on attention: an ERP study. Brain Res Cogn Brain Res 2005;25(1):107–16. 链接1

[19] Craig A, Tran Y, Wijesuriya N, Nguyen H. Regional brain wave activity changes associated with fatigue. Psychophysiology 2012;49(4):574–82. 链接1

[20] Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, et al. Timerelated changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 1997;9(3):392–408. 链接1

[21] Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J. Induced alpha band power changes in the human EEG and attention. Neurosci Lett 1998;244(2):73–6. 链接1

[22] Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 1999;29(2– 3):169–95. 链接1

[23] Oken BS, Salinsky M. Alertness and attention: basic science and electrophysiologic correlates. J Clin Neurophysiol 1992;9(4):480–94. 链接1

[24] Ray WJ, Cole HW. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 1985;228 (4700):750–2. 链接1

[25] Foxe JJ, Morie KP, Laud PJ, Rowson MJ, de Bruin EA, Kelly SP. Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology 2012;62(7):2320–7. 链接1

[26] Lorist MM, Boksem MA, Ridderinkhof KR. Impaired cognitive control and reduced cingulate activity during mental fatigue. Brain Res Cogn Brain Res 2005;24(2):199–205. 链接1

[27] Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci Biobehav Rev 2014;44:58–75. 链接1

[28] Lim J, Wu WC, Wang J, Detre JA, Dinges DF, Rao H. Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect. Neuroimage 2010;49(4):3426–35. 链接1

[29] Gui D, Xu S, Zhu S, Fang Z, Spaeth AM, Xin Y, et al. Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload. Neuroimage 2015;120:323–30. 链接1

[30] Nakagawa S, Sugiura M, Akitsuki Y, Hosseini SM, Kotozaki Y, Miyauchi CM, et al. Compensatory effort parallels midbrain deactivation during mental fatigue: an fMRI study. PLoS One 2013;8(2):e56606. 链接1

[31] Jiao X, Bai J, Chen S, Li Q. Research on mental fatigue based on entropy changes in space environment, in: Proceedings of the 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems; 2012 Jul 2–4; Tianjin, China; 2012. p. 74–7.

[32] De Joux N, Russell PN, Helton WS. A functional near-infrared spectroscopy study of sustained attention to local and global target features. Brain Cogn 2013;81(3):370–5. 链接1

[33] Derosière G, Billot M, Ward ET, Perrey S. Adaptations of motor neural structures’ activity to lapses in attention. Cereb Cortex 2015;25(1):66–74. 链接1

[34] Chuang C, Cao Z, King J, Wu B, Wang Y, Lin C. Brain electrodynamic and hemodynamic signatures against fatigue during driving. Front Neurosci 2018;12:181. 链接1

[35] Khan MJ, Hong KS. Passive BCI based on drowsiness detection: an fNIRS study. Biomed Opt Express 2015;6(10):4063–78. 链接1

[36] Coull JT, Frackowiak RS, Frith CD. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 1998;36(12):1325–34. 链接1

[37] Sturm W, De Simone A, Krause BJ, Specht K, Hesselmann V, Radermacher I, et al. Functional anatomy of intrinsic alertness: evidence for a fronto-parietalthalamic-brainstem network in theright hemisphere. Neuropsychologia 1999;37(7):797–805. 链接1

[38] Tajima S, Yamamoto S, Tanaka M, Kataoka Y, Iwase M, Yoshikawa E, et al. Medial orbitofrontal cortex is associated with fatigue sensation. Neurol Res Int 2010;2010:671421. 链接1

[39] Sun Y, Lim J, Kwok K, Bezerianos A. Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in smallworld networks. Brain Cogn 2014;85:220–30. 链接1

[40] Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 2001;79(1–2):1–37. 链接1

[41] Sun Y, Lim J, Dai Z, Wong K, Taya F, Chen Y, et al. The effects of a mid-task break on the brain connectome in healthy participants: a resting-state functional MRI study. Neuroimage 2017;152:19–30. 链接1

[42] Ishii A, Tanaka M, Watanabe Y. Neural mechanisms of mental fatigue. Rev Neurosci 2014;25(4):469–79. 链接1

[43] Bassett DS, Bullmore ET. Human brain networks in health and disease. Curr Opin Neurol 2009;22(4):340–7. 链接1

[44] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998;393(6684):440–2. 链接1

[45] Taya F, Sun Y, Babiloni F, Thakor N, Bezerianos A. Brain enhancement through cognitive training: a new insight from brain connectome. Front Syst Neurosci 2015;9:44. 链接1

[46] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273–89. 链接1

[47] Kennedy DN, Lange N, Makris N, Bates J, Meyer J, Caviness Jr VS. Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb Cortex 1998;8(4):372–84. 链接1

[48] Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, Caviness Jr VS. MRIbased topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 1999;9(1):18–45. 链接1

[49] Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 2016;26(8):3508–26. 链接1

[50] Craddock RC, James GA, Holtzheimer 3rd PE, Hu XP, Mayberg HS. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 2012;33(8):1914–28. 链接1

[51] Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011;106(3):1125–65. 链接1

[52] Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature 2016;536 (7615):171–8. 链接1

[53] Arslan S, Ktena SI, Makropoulos A, Robinson EC, Rueckert D, Parisot S. Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. Neuroimage 2018;170:5–30. 链接1

[54] De Reus MA, Van den Heuvel MP. The parcellation-based connectome: limitations and extensions. Neuroimage 2013;80:397–404. 链接1

[55] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10 (3):186–98. 链接1

[56] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52(3):1059–69. 链接1

[57] Zhou D, Thompson WK, Siegle G. MATLAB toolbox for functional connectivity. Neuroimage 2009;47(4):1590–607. 链接1

[58] Váša F, Bullmore ET, Patel AX. Probabilistic thresholding of functional connectomes: application to schizophrenia. Neuroimage 2018;172:326–40. 链接1

[59] Van den Heuvel MP, De Lange SC, Zalesky A, Seguin C, Yeo BTT, Schmidt R. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations. Neuroimage 2017;152:437–49. 链接1

[60] Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLOS Comput Biol 2007;3(2):e17. 链接1

[61] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: structure and dynamics. Phys Rep 2006;424(4–5):175–308. 链接1

[62] Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969;37(3):424–38. 链接1

[63] Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 2015;9:386. 链接1

[64] Kruschwitz JD, List D, Waller L, Rubinov M, Walter H. GraphVar: a userfriendly toolbox for comprehensive graph analyses of functional brain connectivity. J Neurosci Methods 2015;245:107–15. 链接1

[65] Hosseini SM, Hoeft F, Kesler SR. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS ONE 2012;7(7):e40709. 链接1

[66] Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2012;2(3):125–41. 链接1

[67] Boissoneault J, Letzen J, Lai S, O’Shea A, Craggs J, Robinson ME, et al. Abnormal resting state functional connectivity in patients with chronic fatiguesyndrome: an arterial spin-labeling fMRI study. Magn Reson Imaging 2016;34 (4):603–8. 链接1

[68] Gay CW, Robinson ME, Lai S, O’Shea A, Craggs JG, Price DD, et al. Abnormal resting-state functional connectivity in patients with chronic fatigue syndrome: results of seed and data-driven analyses. Brain Connect 2016; 6(1):48–56. 链接1

[69] Chua BL, Dai Z, Thakor N, Bezerianos A, Sun Y. Connectome pattern alterations with increment of mental fatigue in one-hour driving simulation. In: Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society;2017 Jul 11–15; Seogwipo, Korea. New York: IEEE; 2017. p. 4355–8. 链接1

[70] Xu L, Wang B, Xu G, Wang W, Liu Z, Li Z. Functional connectivity analysis using fNIRS in healthy subjects during prolonged simulated driving. Neurosci Lett 2017;640:21–8. 链接1

[71] Dimitrakopoulos GN, Kakkos I, Dai Z, Wang H, Sgarbas K, Thakor N, et al. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans Neural Syst Rehabil Eng 2018;26(4):740–9. 链接1

[72] Taya F, Dimitriadis SI, Dragomir A, Lim J, Sun Y, Wong KF, et al. Frontoparietal subnetworks flexibility compensates for cognitive decline due to mental fatigue. Hum Brain Mapp 2018;39(9):3528–45. 链接1

[73] Li G, Zhang T, Chen X, Shang C, Wang Y. Effect of intermittent hypoxic training on hypoxia tolerance based on brain functional connectivity. Physiol Meas 2016;37(12):2299–316. 链接1

[74] Li J, Lim J, Chen Y, Wong K, Thakor N, Bezerianos A, et al. Mid-task break improves global integration of functional connectivity in lower alpha band. Front Hum Neurosci 2016;10:304. 链接1

[75] Li G, Li B, Wang G, Zhang J, Wang J. A new method for human mental fatigue detection with several EEG channels. J Med Biol Eng 2017;37 (2):240–7. 链接1

[76] Clayton MS, Yeung N, Cohen Kadosh R. The roles of cortical oscillations in sustained attention. Trends Cogn Sci 2015;19(4):188–95. 链接1

[77] Huang CS, Pal NR, Chuang CH, Lin CT. Identifying changes in EEG information transfer during drowsy driving by transfer entropy. Front Hum Neurosci 2015;9:570. 链接1

[78] Kong W, Lin W, Babiloni F, Hu S, Borghini G. Investigating driver fatigue versus alertness using the granger causality network. Sensors 2015;15 (8):19181–98. 链接1

[79] Sengupta A, Datta S, Kar S, Routray A. EEG synchronization and brain networks: a case study in fatigue. In: Proceedings of the 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems; 2014 Nov 7–8; Greater Noida, India. New York: IEEE; 2014. p. 278–82. 链接1

[80] Chen R, Wang X, Zhang L, Yi W, Ke Y, Qi H, et al. Research on multidimensional N-back task induced EEG variations. Conf Proc IEEE Eng Med Biol Soc 2015;2015:5163–6. 链接1

[81] Sun Y, Lim J, Meng J, Kwok K, Thakor N, Bezerianos A. Discriminative analysis of brain functional connectivity patterns for mental fatigue classification. Ann Biomed Eng 2014;42(10):2084–94. 链接1

[82] Alonso JF, Romero S, Ballester MR, Antonijoan RM, Mañanas MA. Stress assessment based on EEG univariate features and functional connectivity measures. Physiol Meas 2015;36(7):1351–65. 链接1

[83] Sengupta A, Datta S, Kar S, Routray A. Analysis of fatigue using EEG statespace analysis. In: Proceedings of the 2014 Annual IEEE India Conference; 2014 Dec 11–13; Pune, India. New York: IEEE; 2015. p. 1–6. 链接1

[84] Sengupta A, Routray A, Kar S. Estimation of fatigue in drivers by analysis of brain networks. In: Proceedings of the 2014 Fourth International Conference of Emerging Applications of Information Technology; 2014 Dec 19–21; Kolkata, India. New York: IEEE; 2014. p. 289–93. 链接1

[85] Gordon EM, Breeden AL, Bean SE, Vaidya CJ. Working memory-related changes in functional connectivity persist beyond task disengagement. Hum Brain Mapp 2014;35(3):1004–17. 链接1

[86] Borghini G, Vecchiato G, Toppi J, Astolfi L, Maglione A, Isabella R, et al. Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. Conf Proc IEEE Eng Med Biol Soc 2012;2012:6442–5. 链接1

[87] Mizuno K, Tajima K, Watanabe Y, Kuratsune H. Fatigue correlates with the decrease in parasympathetic sinus modulation induced by a cognitive challenge. Behav Brain Funct 2014;10(1):25. 链接1

[88] Kar S, Routray A, Nayak BP. Functional network changes associated with sleep deprivation and fatigue during simulated driving: validation using blood biomarkers. Clin Neurophysiol 2011;122(5):966–74. 链接1

[89] Takamoto K, Hori E, Urakawa S, Katayama M, Nagashima Y, Yada Y, et al. Thermotherapy to the facial region in and around the eyelids altered prefrontal hemodynamic responses and autonomic nervous activity during mental arithmetic. Psychophysiology 2013;50(1):35–47. 链接1

[90] Liu JP, Zhang C, Zheng CX. Estimation of the cortical functional connectivity by directed transfer function during mental fatigue. Appl Ergon 2010;42 (1):114–21. 链接1

[91] Ten Caat M, Lorist MM, Bezdan E, Roerdink JB, Maurits NM. High-density EEG coherence analysis using functional units applied to mental fatigue. J Neurosci Methods 2008;171(2):271–8. 链接1

[92] Esposito F, Otto T, Zijlstra FR, Goebel R. Spatially distributed effects of mental exhaustion on resting-state FMRI networks. PLoS One 2014;9(4):e94222. 链接1

[93] Betzel RF, Satterthwaite TD, Gold JI, Bassett DS. Positive affect, surprise, and fatigue are correlates of network flexibility. Sci Rep 2017;7:520. 链接1

[94] Lorist MM, Bezdan E, ten Caat M, Span MM, Roerdink JB, Maurits NM. The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Res 2009;1270:95–106. 链接1

[95] Zhao C, Zhao M, Yang Y, Gao J, Rao N, Lin P. The reorganization of human brain networks modulated by driving mental fatigue. IEEE J Biomed Health Inform 2017;21(3):743–55. 链接1

[96] Breckel TP, Thiel CM, Bullmore ET, Zalesky A, Patel AX, Giessing C. Long-term effects of attentional performance on functional brain network topology. PLoS One 2013;8(9):e74125. 链接1

[97] Kitzbichler MG, Henson RN, Smith ML, Nathan PJ, Bullmore ET. Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 2011;31(22):8259–70. 链接1

[98] Alavash M, Doebler P, Holling H, Thiel CM, Gießing C. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance? Neuroimage 2015;108:182–93. 链接1

[99] O’Donnel RD, Eggemeier FT. Workload assessment methodology. In: Boff KR, Kaufman L, Thomas JP, editors. Handbook of perception and human performance, volume II, cognitive processes and performance. New York: Wiley; 1986. 链接1

[100] Arico P, Borghini G, Di Flumeri G, Bonelli S, Golfetti A, Graziani I, et al. Human factors and neurophysiological metrics in air traffic control: a critical review. IEEE Rev Biomed Eng 2017;10:250–63. 链接1

[101] De Warrd D. The measurement of drivers’ mental workload. Haren: University of Groningen; 1996. 链接1

[102] Sciaraffa N, Borghini G, Aricò P, Di Flumeri G, Colosimo A, Bezerianos A, et al. Brain interaction during cooperation: evaluating local properties of multiplebrain network. Brain Sci 2017;7(7):90. 链接1

[103] Sciaraffa N, Borghini G, Arico P, Di Flumeri G, Toppi J, Colosimo A, et al. How the workload impacts on cognitive cooperation: A pilot study. Conf Proc IEEE Eng Med Biol Soc 2017;2017:3961–4. 链接1

[104] Vecchiato G, Borghini G, Aricò P, Graziani I, Maglione AG, Cherubino P, et al. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks. Med Biol Eng Comput 2016;54 (10):1503–13. 链接1

[105] Dimitriadis SI, Sun Y, Laskaris N, Thakor N, Bezerianos A. Revealing crossfrequency causal interactions during a mental arithmetic task through symbolic transfer entropy: a novel vector-quantization approach. IEEE Trans Neural Syst Rehabil Eng 2016;24(10):1017–28. 链接1

[106] Dimitriadis SI, Sun Y, Kwok K, Laskaris NA, Thakor N, Bezerianos A. Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions. Ann Biomed Eng 2015;43(4):977–89. 链接1

[107] Dimitrakopoulos GN, Kakkos I, Dai Z, Lim J, deSouza JJ, Bezerianos A, et al. Task-independent mental workload classification based upon common multiband eeg cortical connectivity. IEEE Trans Neural Syst Rehabil Eng 2017;25(11):1940–9. 链接1

[108] Giessing C, Thiel CM, Alexander-Bloch AF, Patel AX, Bullmore ET. Human brain functional network changes associated with enhanced and impaired attentional task performance. J Neurosci 2013;33(14):5903–14. 链接1

[109] Parasuraman R, Jiang Y. Individual differences in cognition, affect, and performance: behavioral, neuroimaging, and molecular genetic approaches. Neuroimage 2012;59(1):70–82. 链接1

[110] Arico P, Borghini G, Di Flumeri G, Sciaraffa N, Colosimo A, Babiloni F. Passive BCI in operational environments: insights, recent advances, and future trends. IEEE Trans Biomed Eng 2017;64(7):1431–6. 链接1

[111] Finkbeiner KM, Russell PN, Helton WS. Rest improves performance, nature improves happiness: assessment of break periods on the abbreviated vigilance task. Conscious Cogn 2016;42:277–85. 链接1

[112] Helton WS, Russell PN. Rest is best: the role of rest and task interruptions on vigilance. Cognition 2015;134:165–73. 链接1

[113] Lim J, Teng J, Wong KF, Chee MWL. Modulating rest-break length induces differential recruitment of automatic and controlled attentional processes upon task reengagement. Neuroimage 2016;134:64–73. 链接1

[114] Ross HA, Russell PN, Helton WS. Effects of breaks and goal switches on the vigilance decrement. Exp Brain Res 2014;232(6):1729–37. 链接1

[115] Lim J, Kwok K. The effects of varying break length on attention and time on task. Hum Factors 2016;58(3):472–81. 链接1

[116] Christoff K, Irving ZC, Fox KC, Spreng RN, Andrews-Hanna JR. Mindwandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 2016;17(11):718–31. 链接1

[117] Thomson DR, Besner D, Smilek D. A resource-control account of sustained attention: evidence from mind-wandering and vigilance paradigms. Perspect Psychol Sci 2015;10(1):82–96. 链接1

[118] Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 2015;16(1):55–61. 链接1

[119] Helton WS, Russell PN. Visuospatial and verbal working memory load: effects on visuospatial vigilance. Exp Brain Res 2013;224(3):429–36. 链接1

[120] Shao Y, Wang L, Ye E, Jin X, Ni W, Yang Y, et al. Decreased thalamocortical functional connectivity after 36 hours of total sleep deprivation: evidence from resting state FMRI. PLoS One 2013;8(10):e78830. 链接1

[121] Chaudhuri A, Behan PO. Fatigue and basal ganglia. J Neurol Sci 2000;179(1– 2):34–42. 链接1

[122] Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. Neuroimage 2012;59(3):2349–61. 链接1

[123] Sha Z, Xia M, Lin Q, Cao M, Tang Y, Xu K, et al. Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders. Cereb Cortex 2018;28(12):4179–94. 链接1

相关研究