期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第5期 doi: 10.1016/j.eng.2018.11.035

中东呼吸综合征病毒(MERS-CoV)蛋白的分子特征、功能及其致病性

a State Key Laboratory for Diagnosis and Treatment of Infectious Diseases. Hangzhou 310003, China
b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 31003, China

收稿日期: 2018-07-25 修回日期: 2018-10-24 录用日期: 2018-11-12 发布日期: 2019-07-19

下一篇 上一篇

摘要

中东呼吸综合征(MERS)是由一种新型冠状病毒——中东呼吸综合征冠状病毒(MERS-CoV)引起的病毒性呼吸道疾病,病死率高。然而,MERS-CoV感染人类的机制仍不清楚。除了完整人免疫球蛋白G(IgG)多克隆抗体(SAB-301)的安全性和耐受性得到一定的验证之外,目前尚无其他针对MERS-CoV的有效的预防性疫苗或抗体特效治疗手段。尽管目前正在研究病毒的快速诊断技术并加强公共卫生的管理,但感染MERS-CoV的病例仍在不断出现。因此,需要实施各种有效措施防止疫情恶化。进一步研究病毒的流行病学特征和发病机制,以及开发有效的抗MERS-CoV感染的治疗和预防性药物是十分必要的。为此,我们需要明确MERS-CoV各种蛋白的详细信息。在文中论述了MERS-CoV的主要结构蛋白和非结构蛋白,并总结了抑制MERS-CoV感染的各种潜在的策略。计算生物学和病毒学的结合可以促进抗MERS-CoV的有效肽治疗剂的设计和开发。总之,本文提供了遏制MERS进展(从预防到治疗)的重要信息。

参考文献

[ 1 ] Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis 2018;18(8):e217–27. 链接1

[ 2 ] Lee H, Lei H, Santarsiero BD, Gatuz JL, Cao S, Rice AJ, et al. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARSCoV. ACS Chem Biol 2015;10(6):1456–65. 链接1

[ 3 ] Choi J, Kim MG, Oh YK, Kim YB. Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review. Expert Opin Ther Pat 2017;27 (6):721–31. 链接1

[ 4 ] Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367(19):1814–20. 链接1

[ 5 ] Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA 2017;114(35):E7348–57. 链接1

[ 6 ] Beigel JH, Voell J, Kumar P, Raviprakash K, Wu H, Jiao JA, et al. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis 2018;18(4):410–8. 链接1

[ 7 ] Van Boheemen S, De Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 2012;3(6):e00473–512. 链接1

[ 8 ] Frey KG, Redden CL, Bishop-Lilly KA, Johnson R, Hensley LE, Raviprakash K, et al. Full-genome sequence of human betacoronavirus 2c Jordan-N3/2012 after serial passage in mammalian cells. Genome Announc 2014;2(3): e00324–414. 链接1

[ 9 ] Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev 2015;28(2):465–522. 链接1

[10] Cotten M, Lam TT, Watson SJ, Palser AL, Petrova V, Grant P, et al. Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerg Infect Dis 2013;19(5):736–42. 链接1

[11] Widagdo W, Okba NMA, Stalin Raj V, Haagmans BL. MERS-coronavirus: from discovery to intervention. One Health 2016;3:11–6. 链接1

[12] Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptorbinding domain complexed with receptor. Science 2005;309(5742):1864–8. 链接1

[13] Du L, Kou Z, Ma C, Tao X, Wang L, Zhao G, et al. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. PLoS One 2013;8(12):e81587. 链接1

[14] Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013;500 (7461):227–31. 链接1

[15] Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng CT, et al. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine 2014;32(18):2100–8. 链接1

[16] Mou H, Raj VS, Van Kuppeveld FJ, Rottier PJ, Haagmans BL, Bosch BJ. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol 2013;87(16):9379–83. 链接1

[17] Lan J, Yao Y, Deng Y, Hu Y, Bao L, Huang B, et al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine 2017;35(1):10–8. 链接1

[18] Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;386(9997):995–1007. 链接1

[19] Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 2014;5:3067. 链接1

[20] Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015;202:120–34. 链接1

[21] Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining ‘‘host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 2015;23 (8):468–78. 链接1

[22] Surya W, Li Y, Verdià-Bàguena C, Aguilella VM, Torres J. MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res 2015;201:61–6. 链接1

[23] Westerbeck JW, Machamer CE. A coronavirus E protein is present in two distinct pools with different effects on assembly and the secretory pathway. J Virol 2015;89(18):9313–23. 链接1

[24] Xie Q, He X, Yang F, Liu X, Li Y, Liu Y, et al. Analysis of the genome sequence and prediction of B-cell epitopes of the envelope protein of Middle East respiratory syndrome-coronavirus. IEEE/ACM Trans Comput Biol Bioinform 2018;15(4):1344–50. 链接1

[25] Liu J, Sun Y, Qi J, Chu F, Wu H, Gao F, et al. The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. J Infect Dis 2010;202(8):1171–80. 链接1

[26] De Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res 2005;64:165–230. 链接1

[27] Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERSCoV infection by resveratrol. BMC Infect Dis 2017;17(1):144. 链接1

[28] Szelazek B, Kabala W, Kus K, Zdzalik M, Twarda-Clapa A, Golik P, et al. Structural characterization of human coronavirus NL63 N protein. J Virol 2017;91(11):e02503–16. 链接1

[29] Hu Y, Li W, Gao T, Cui Y, Jin Y, Li P, et al. The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J Virol 2017;91(8): e02143–16. 链接1

[30] Grunewald ME, Fehr AR, Athmer J, Perlman S. The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 2018;517:62–8. 链接1

[31] Papageorgiou N, Lichière J, Baklouti A, Ferron F, Sévajol M, Canard B, et al. Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering. Acta Crystallogr D Struct Biol 2016;72(Pt 2):192–202. 链接1

[32] Banda NK, Acharya S, Scheinman RI, Mehta G, Takahashi M, Endo Y, et al. Deconstructing the lectin pathway in the pathogenesis of experimental inflammatory arthritis: essential role of the lectin ficolin B and mannosebinding protein-associated serine protease 2. J Immunol 2017;199 (5):1835–45. 链接1

[33] Bolwig GM, Bruder JT, Hearing P. Different binding site requirements for binding and activation for the bipartite enhancer factor EF-1A. Nucleic Acids Res 1992;20(24):6555–64. 链接1

[34] Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol 2017;25(1):35–48. 链接1

[35] Menachery VD, Mitchell HD, Cockrell AS, Gralinski LE, Yount BL Jr, Graham RL, et al. MERS-CoV accessory ORFs play key role for infection and pathogenesis. MBio 2017;8(4):e00665–717. 链接1

[36] Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 2013;4(12):951–61. 链接1

[37] Thornbrough JM, Jha BK, Yount B, Goldstein SA, Li Y, Elliott R, et al. Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation. MBio 2016;7(2):e00258. 链接1

[38] Rabouw HH, Langereis MA, Knaap RC, Dalebout TJ, Canton J, Sola I, et al. Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses. PLoS Pathog 2016;12(10):e1005982. 链接1

[39] Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses—drug discovery and therapeutic options. Nat Rev Drug Discov 2016;15(5):327–47. 链接1

[40] Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res 2018;149:58–74. 链接1

[41] Báez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 2015;115:21–38. 链接1

[42] Kankanamalage ACG, Kim Y, Damalanka VC, Rathnayake AD, Fehr AR, Mehzabeen N, et al. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur J Med Chem 2018;150:334–46. 链接1

[43] Kandeel M, Altaher A. Synonymous and biased codon usage by MERS CoV papain-like and 3CL-proteases. Biol Pharm Bull 2017;40(7):1086–91. 链接1

[44] Forni D, Cagliani R, Mozzi A, Pozzoli U, Al-Daghri N, Clerici M, et al. Extensive positive selection drives the evolution of nonstructural proteins in lineage C betacoronaviruses. J Virol 2016;90(7):3627–39. 链接1

[45] Oudshoorn D, Rijs K, Limpens RWAL, Groen K, Koster AJ, Snijder EJ, et al. Expression and cleavage of Middle East respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. MBio 2017;8(6): e01658–717. 链接1

[46] Terada Y, Kawachi K, Matsuura Y, Kamitani W. MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA. Virology 2017;511:95–105. 链接1

[47] Zhang R, Li Y, Cowley TJ, Steinbrenner AD, Phillips JM, Yount BL, et al. The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU. J Virol 2015;89(7):3598–609. 链接1

[48] Adedeji AO, Lazarus H. Biochemical characterization of Middle East respiratory syndrome coronavirus helicase. mSphere 2016;1(5):e00235–316. 链接1

[49] Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J, Rabouw HH, et al. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog 2017;13(2):e1006195. 链接1

[50] Deng X, HackbartM,Mettelman RC, O’Brien A,Mielech AM, Yi G, et al. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc Natl Acad Sci USA 2017;114(21):E4251–60. 链接1

[51] Aouadi W, Blanjoie A, Vasseur JJ, Debart F, Canard B, Decroly E. Binding of the methyl donor S-adenosyl-I-methionine to Middle East respiratory syndrome coronavirus 20 -O-methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10. J Virol 2017;91(5):e02217–316. 链接1

[52] Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio 2013;4(4):e00524–613. 链接1

[53] Menachery VD, Gralinski LE, Mitchell HD, Dinnon KH 3rd, Leist SR, Yount BL Jr, et al. Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis. mSphere 2017;2 (6):e00346–417. 链接1

[54] Alfuwaires M, Altaher A, Kandeel M. Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV Non-Structural Protein 3. Biol Pharm Bull 2017;40(3):345–51. 链接1

[55] Huang YP, Cho CC, Chang CF, Hsu CH. NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV). Biomol NMR Assign 2016;10(2):245–8. 链接1

[56] Phua KKL, Liu Y, Sim SH. Non-linear enhancement of mRNA delivery efficiencies by influenza A derived NS1 protein engendering host gene inhibition property. Biomaterials 2017;133:29–36. 链接1

[57] Qian W, Wei X, Guo K, Li Y, Lin X, Zou Z, et al. The C-terminal effector domain of non-structural protein 1 of influenza A virus blocks IFN-b production by targeting TNF receptor-associated factor 3. Front Immunol 2017;8:779. 链接1

[58] Kuo RL, Li LH, Lin SJ, Li ZH, Chen GW, Chang CK, et al. Role of N terminustruncated NS1 proteins of influenza A virus in inhibiting IRF3 activation. J Virol 2016;90(9):4696–705. 链接1

[59] Schierhorn KL, Jolmes F, Bespalowa J, Saenger S, Peteranderl C, Dzieciolowski J, et al. Influenza a virus virulence depends on two amino acids in the N-terminal domain of its NS1 protein to facilitate inhibition of the RNA-dependent protein kinase PKR. J Virol 2017;91(10):e00198–217. 链接1

[60] Lokugamage KG, Narayanan K, Nakagawa K, Terasaki K, Ramirez SI, Tseng CT, et al. Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin. J Virol 2015;89(21):10970–81. 链接1

[61] Peters HL, Jochmans D, de Wilde AH, Posthuma CC, Snijder EJ, Neyts J, et al. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg Med Chem Lett 2015;25 (15):2923–6. 链接1

[62] Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother 2014;58(8):4885–93. 链接1

[63] De Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, Van Nieuwkoop S, Limpens RW, et al. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-a treatment. J Gen Virol 2013;94(Pt 8):1749–60. 链接1

[64] Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review. J Infect Public Health 2018;11(1):9–17. 链接1

[65] Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, et al. Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front Immunol 2018;9:1093. 链接1

[66] Corti D, Passini N, Lanzavecchia A, Zambon M. Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome. J Infect Public Health 2016;9(3):231–5. 链接1

[67] Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC, et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci USA 2014;111(19): E2018–26. 链接1

[68] Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, et al. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med 2014;6(234):234ra59. 链接1

[69] Niu P, Zhang S, Zhou P, Huang B, Deng Y, Qin K, et al. Ultrapotent human neutralizing antibody repertoires against Middle East respiratory syndrome coronavirus from a recovered patient. J Infect Dis 2018;218(8):1249–60. 链接1

[70] Pascal KE, Coleman CM, Mujica AO, Kamat V, Badithe A, Fairhurst J, et al. Preand postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci USA 2015;112(28):8738–43. 链接1

[71] De Wit E, Feldmann F, Okumura A, Horne E, Haddock E, Saturday G, et al. Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets. Antiviral Res 2018;156:64–71. 链接1

[72] Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, et al. A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol 2014;88(12):7045–53. 链接1

[73] Rabaan AA, Alahmed SH, Bazzi AM, Alhani HM. A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective. J Med Microbiol 2017;66(9):1261–74. 链接1

[74] Qiu H, Sun S, Xiao H, Feng J, Guo Y, Tai W, et al. Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)- coronavirus infection. Antiviral Res 2016;132:141–8. 链接1

[75] Li Y, Wan Y, Liu P, Zhao J, Lu G, Qi J, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Res 2015;25(11):1237–49. 链接1

[76] Zhang N, Channappanavar R, Ma C, Wang L, Tang J, Garron T, et al. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol 2016;13(2):180–90. 链接1

[77] Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 2015;6:7712. 链接1

[78] Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013;87(23):12552–61. 链接1

[79] Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 2013;87(10):5502–11. 链接1

[80] Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci USA 2014;111(42):15214–9. 链接1

[81] Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM, Frieman MB. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J Virol 2016;90(19):8924–33. 链接1

[82] Wrensch F, Winkler M, Pöhlmann S. IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms. Viruses 2014;6(9):3683–98. 链接1

[83] Liu S, Wu S, Jiang S. HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds. Curr Pharm Des 2007;13 (2):143–62. 链接1

[84] Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1–23. 链接1

[85] Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature 2016;531 (7592):118–21. 链接1

[86] Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 2016;23(10): 899–905. 链接1

[87] Walls A, Tortorici MA, Bosch BJ, Frenz B, Rottier PJ, DiMaio F, et al. Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryoelectron microscopy. Protein Sci 2017;26(1):113–21. 链接1

[88] Gao X, Zhou H, Wu C, Xiao Y, Ren L, Paranhos-Baccalà G, et al. Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection. J Infect 2015;71(5):599–602. 链接1

[89] Yamaoka Y, Matsuyama S, Fukushi S, Matsunaga S, Matsushima Y, Kuroyama H, et al. Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen. Front Microbiol 2016;7:50. 链接1

相关研究