期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第5期 doi: 10.1016/j.eng.2018.11.036

通过厌氧分批处理香蕉皮提高沼气产量

Faculty of Science and Engineering, University of Groningen, Groningen 9747 AG, the Netherlands

收稿日期: 2018-08-23 修回日期: 2018-10-05 录用日期: 2018-11-25 发布日期: 2019-08-21

下一篇 上一篇

摘要

废物处置和能源危机是大多数国家面临的重要挑战。水果加工业每天产生数吨废物,其中大部分来自香蕉农场。厌氧消化(AD)技术已被应用于废水、污泥、食物垃圾和农业剩余物的处理,其主要目的是生产能源和消除废物。本研究探讨有机负荷(OL)和牛粪(CM)添加对处理香蕉皮废料(BPW)时AD性能的影响。在OL为每升18 g和22 g挥发性固体(gvs)时,CM含量为10%、20%和30%的香蕉皮(BP)每日最大沼气产量分别为50.20 mL·gvs–1、48.66 mL·gvs–1、62.78 mL·gvs–1和40.49 mL·gvs–1、29.57 mL·gvs–1、46.54 mL·gvs–1。然而,每日沼气产量与OL或CM含量没有明显的相关性。此外,动力学分析表明,一阶模型和锥体模型的动力学参数受工艺参数的影响。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Commodity markets monitoring and outlook: bananas [Internet]. Rome: Food and Agriculture Organization of the United Nations; [cited 2018 Mar 16]. Available from: http://www.fao.org/economic/est/est-commodities/bananas/ en/. 链接1

[ 2 ] Padam BS, Tin HS, Chye FY, Abdullah MI. Banana by-products: an underutilized renewable food biomass with great potential. J Food Sci Technol 2014;51(12):3527–45. 链接1

[ 3 ] Abdullah N, Sulaiman F, Miskam MA, Taib RM. Characterization of banana (Musa spp.) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource. Int J Biol Vet Agric Food Eng 2014;8(8):712–6. 链接1

[ 4 ] Preethi P, Balakrishna MG. Physical and chemical properties of banana fiber extracted from commercial banana cultivars grown in Tamilnadu State. Agrotechnology 2013;S11:008. 链接1

[ 5 ] Essien JP, Akpan EJ, Essien EP. Studies on mould growth and biomass production using waste banana peel. Bioresour Technol 2005;96(13):1451–6. 链接1

[ 6 ] Shah MP, Reddy GP, Banerjee R, Ravindra Babu P, Kothari IL. Microbial degradation of banana waste under solid state bioprocessing using two lignocellulolytic fungi (Phylosticta spp. MPS-001 and Aspergillus spp. MPS-002). Process Biochem 2005;40(1):445–51. 链接1

[ 7 ] Yabaya A, Ado SA. Mycelial protein production by Aspergillus niger using banana peels. Sci World J 2008;3(4):9–12. 链接1

[ 8 ] Ali N, Ubhrani P, Tagotra M, Ahire M. A step towards environmental waste management and sustainable biofuel (ethanol) production from waste banana peelings. Am J Eng Res 2014;3(5):110–6. 链接1

[ 9 ] Chen JF. Green chemical engineering for a better life. Engineering 2017;3 (3):279. 链接1

[10] Food and Agriculture Organization Statistics (FAOSTAT) data [Internet]. Rome: Food and Agriculture Organization of the United Nations; [cited 2018 Mar 24]. Available from: http://www.fao.org/faostat/en/?#data. 链接1

[11] Chen P, Anderson E, Addy M, Zhang R, Cheng Y, Peng P, et al. Breakthrough technologies for the biorefining of organic solid and liquid wastes. Engineering 2018;4(4):574–80. 链接1

[12] Li WW, Yu HQ. Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment. Engineering 2016;2(4):438–46. 链接1

[13] Gumisiriza R, Hawumba JF, Okure M, Hensel O. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol Biofuels 2017;10(1):11. 链接1

[14] Dung Thi NB, Lin CY, Kumar G. Electricity generation comparison of food waste-based bioenergy with wind and solar powers: a mini review. Sustainable Environ Res 2016;26(5):197–202. 链接1

[15] Valenti F, Porto SMC, Cascone G, Arcidiacono C. Potential biogas production from agricultural by-products in Sicily. A case study of citrus pulp and olive pomace. J Agric Eng 2017;48(4):196–202. 链接1

[16] Achinas S, Achinas V, Euverink GJW. A technological overview of biogas production from biowaste. Engineering 2017;3(3):299–307. 链接1

[17] Venkiteshwaran K, Bocher B, Maki J, Zitomer D. Relating anaerobic digestion microbial community and process function. Microbiol Insights 2016;8(Suppl 2):37–44. 链接1

[18] Achinas S, Achinas V. Biogas combustion: an introductory briefing. In: Vico A, Artemio N, editors. Biogas: production, applications and global developments. New York: Nova Science Publishers, Inc; 2017. p. 179–93. 链接1

[19] Chen JF. Green chemical engineering. Engineering 2017;3(3):283–4. 链接1

[20] Macedonio F, Drioli E. Membrane engineering for green process engineering. Engineering 2017;3(3):290–8. 链接1

[21] Nelson MJ, Nakhla G, Zhu J. Fluidized-bed bioreactor applications for biological wastewater treatment: a review of research and developments. Engineering 2017;3(3):330–42. 链接1

[22] Dell’Antonia D, Cividino SRS, Carlino A, Gubiani R, Pergher G. Development perspectives for biogas production from agricultural waste in Friuli Venezia Giulia (Nord-East of Italy). J Agric Eng 2013;44(2s):569–72. 链接1

[23] Orzi V, Scaglia B, Lonati S, Riva C, Boccasile G, Alborali GL, et al. The role of biological processes in reducing both odor impact and pathogen content during mesophilic anaerobic digestion. Sci Total Environ 2015;526:116–26. 链接1

[24] Menardo S, Balsari P. An analysis of the energy potential of anaerobic digestion of agricultural by-products and organic waste. BioEnergy Res 2012;5 (3):759–67. 链接1

[25] Coppolecchia D, Gardoni D, Baldini C, Borgonovo F, Guarino M. The influence on biogas production of three slurry-handling systems in dairy farms. J Agric Eng 2015;46(1):30–5. 链接1

[26] Bacenetti J, Sala C, Fusi A, Fiala M. Agricultural anaerobic digestion plants: what LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl Energy 2016;179:669–86. 链接1

[27] European Biogas Association. EBA biogas report 2014. Brussels: European Biogas Association; 2014. 链接1

[28] Scaglione D, Caffaz S, Ficara E, Malpei F, Lubello C. A simple method to evaluate the short-term biogas yield in anaerobic codigestion of WAS and organic wastes. Water Sci Technol 2008;58(8):1615–22. 链接1

[29] Dinuccio E, Gioelli F, Cuk D, Rollè L, Balsari P. The use of co-digested solid fraction as a feedstock for biogas plants. J Agric Eng 2013;44(2s):153–9. 链接1

[30] Schievano A, D’Imporzano G, Orzi V, Adani F. On-field study of anaerobic digestion full-scale plants (Part II): new approaches in monitoring and evaluating process efficiency. Bioresour Technol 2011;102(19):8814–9. 链接1

[31] Fabbri A, Serranti S, Bonifazi G. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect. Waste Manag Res 2014;32(3):207–14. 链接1

[32] Liotta F, Esposito G, Fabbricino M, van Hullebusch ED, Lens PNL, Pirozzi F, et al. Methane and VFA production in anaerobic digestion of rice straw under dry, semi-dry and wet conditions during start-up phase. Environ Technol 2016;37 (5):505–12. 链接1

[33] Gomez X, Cuetos MJ, Cara J, Moran A, Garcia AI. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: conditions for mixing and evaluation of the organic loading rate. Renew Energy 2006;31(12):2017–24. 链接1

[34] Bolzonella D, Innocenti L, Cecchi F. Biological nutrient removal wastewater treatments and sewage sludge anaerobic mesophilic digestion performances. Water Sci Technol 2002;46(10):199–208. 链接1

[35] Perazzolo F, Mattachini G, Tambone F, Calcante A, Provolo G. Nutrient losses from cattle co-digestate slurry during storage. J Agric Eng 2016;47(2):94–9. 链接1

[36] Pontoni L, Panico A, Salzano E, Frunzo L, Iodice P, Pirozzi F. Innovative parameters to control the efficiency of anaerobic digestion process. Chem Eng Trans 2015;43:2089–94. 链接1

[37] Mancini G, Papirio S, Lens PNL, Esposito G. Solvent pretreatments of lignocellulosic materials to enhance biogas production: a review. Energy Fuels 2016;30(3):1892–903. 链接1

[38] Clarke WP, Radnidge P, Lai TE, Jensen PD, Hardin MT. Digestion of waste bananas to generate energy in Australia. Waste Manag 2008;28(3):527–33. 链接1

[39] Tock JY, Lai CL, Lee KT, Tan KT, Bhatia S. Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sustain Energy Rev 2010;14(2):798–805. 链接1

[40] Harish KRY, Srijana M, Madhusudhan RD, Gopal R. Co-culture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol 2010;9(13):1926–34. 链接1

[41] Gonzalez-Estrella J, Asato CM, Jerke AC, Stone JJ, Gilcrease PC. Effect of structural carbohydrates and lignin content on the anaerobic digestion of paper and paper board materials by anaerobic granular sludge. Biotechnol Bioeng 2017;114(5):951–60. 链接1

[42] American Public Health Association. Standard methods for the examination of water and wastewater. 21th ed. Washington, DC: American Public Health Association; 2005. 链接1

[43] Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of structural carbohydrates and lignin in biomass. Technical report. Golden: National Renewable Energy Laboratory; 2008. Report No.: NREL/TP-510-42618. 链接1

[44] Water Research Centre. Equipment for measurement of gas production at low rates of flow. Technical memorandum TM104. Stevenage: Water Research Centre; 1975. 链接1

[45] Palmowski LM, Müller JA. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci Technol 2000;41(3):155–62. 链接1

[46] Dinuccio E, Balsari P, Gioelli F, Menardo S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour Technol 2010;101(10):3780–3. 链接1

[47] Luna-del Risco M, Normak A, Orupõld K. Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron Res (Tartu) 2011;9(1–2):331–42. 链接1

[48] Lay J, Li Y, Noike T. Interaction between homoacetogens and methanogens in lake sediments. J Ferment Bioeng 1998;86(5):467–71. 链接1

[49] Li K, Liu R, Sun C. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresour Technol 2015;198:133–40. 链接1

[50] Fantozzi F, Buratti C. Biogas production from different substrates in an experimental continuously stirred tank reactor anaerobic digester. Bioresour Technol 2009;100(23):5783–9. 链接1

[51] Chiumenti A, Boscaro D, da Borso F, Sartori L, Pezzuolo A. Biogas from fresh spring and summer grass: effect of the harvesting period. Energies 2018;11 (6):1466. 链接1

[52] Pisutpaisal N, Boonyawanicha S, Housagul S. Feasibility of biomethane production from banana peel. Energy Procedia 2014;50:782–8. 链接1

[53] Housagul S, Sirisukpoka U, Boonyawanicha S, Pisutpaisal N. Biomethane production from co-digestion of banana peel and waste glycerol. Energy Procedia 2014;61:2219–23. 链接1

[54] Bardiya N, Somayaji D, Khanna S. Biomethanation of banana peel and pineapple waste. Bioresour Technol 1996;58(1):73–6. 链接1

[55] Shafique S, Asgher M, Sheik MA, Asad MJ. Solid state fermentation of banana stalk for exoglucanase production. Int J Agric Biol 2004;3(3):488–91. 链接1

[56] Nathoa C, Sirisukpoca U, Pisutpaisal N. Production of hydrogen and methane from banana peel by two-phase anaerobic fermentation. Energy Procedia 2014;50:702–10. 链接1

[57] Pellera FM, Gidarakos E. Effect of the substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J Environ Chem Eng 2016;4(3):3217–29. 链接1

[58] Cestonaro T, Costa MS, Costa LA, Rozatti MAT, Pereira DC, Lorin HEF, et al. The anaerobic co-digestion of sheep bedding and 50% cattlemanure increases biogas production and improves biofertilizer quality. Waste Manag 2015;46:612–8. 链接1

[59] Alvarez R, Liden G. Low-temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenergy 2009;33(3):527–33. 链接1

[60] Achinas S, Li Y, Achinas V, Euverink GJW. Influence of sheep manure addition on biogas potential and methanogenic communities during cow dung digestion under mesophilic conditions. Sustainable Environ Res 2018;28 (5):240–6. 链接1

[61] Gunaseelan VN. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 2004;26(4):389–99. 链接1

[62] Rivera-Cruz MC, Narcia AT, Ballona GC, Kohler J, Caravaca F, Roldán A. Poultry manure and banana wastes are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 2008;40(12):3092–5. 链接1

[63] Cavinato C, Bolzonella D, Pavan P, Fatone F, Cecchi F. Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew Energy 2013;55:260–5. 链接1

[64] Battista F, Fino D, Erriquens F, Mancini G, Ruggeri B. Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations. Renew Energy 2015;81:71–7. 链接1

[65] Corneli E, Dragoni F, Adessi A, De Philippis R, Bonari E, Ragaglini G. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. Bioresour Technol 2016;211:509–18. 链接1

[66] Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 2016;23:44–53. 链接1

[67] Johnson DK, Elander RT. Treatment for enhanced digestability of feedstocks. In: Himmel ME, editor. Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Oxford: Blackwell Pub; 2009. p. 436–53. 链接1

相关研究