期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第1期 doi: 10.1016/j.eng.2018.12.003

CAR-T细胞产品的质量控制和非临床研究——一般原则和关键问题

National Institutes for Food and Drug Control, Beijing 100050, China

收稿日期: 2018-08-24 修回日期: 2018-11-10 录用日期: 2018-12-07 发布日期: 2018-12-29

下一篇 上一篇

摘要

采用嵌合抗原受体T 细胞(chimeric antigen receptor T cells, CAR-T cells)的过继性细胞治疗是一种很有前途的肿瘤免疫治疗策略,近年来发展迅速。CAR-T 细胞是通过基因修饰能够特异性识别肿瘤细胞表面特定抗原的T 细胞,对肿瘤细胞具有强大的杀灭作用。目前CAR-T 细胞在恶性血液病患者中的临床应用已经取得振奋人心的结果,国内外对于CAR-T 细胞针对多种靶点以及用于治疗实体瘤的研究开发形成了很大的热点,越来越多的产品将会进入临床试验和上市使用。这些产品的质量控制和非临床研究对于保障产品安全、有效具有重要意义,同时也具有较大的挑战和困难。本文在相关细胞治疗和基因治疗产品指导原则的基础上,结合CAR-T 细胞产品的具体特点,探讨其质量控制和非临床前研究的一般原则,以及其中的一些关键问题。

图片

图1

图2

参考文献

[ 1 ] Landoni E, Savoldo B. Treating hematological malignancies with cell therapy: where are we now? Expert Opin Biol Ther 2018;18(1):65–75. 链接1

[ 2 ] Li S, Yang Z, Shen J, Shan J, Qian C. Adoptive therapy with CAR redirected T cells for hematological malignancies. Sci China Life Sci 2016;59(4):370–8. 链接1

[ 3 ] Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378(5):439–48. 链接1

[ 4 ] Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377(26):2531–44. 链接1

[ 5 ] Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 2018;17(1):7. 链接1

[ 6 ] Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: clinical data to date, current limitations and perspectives. Curr Res Transl Med 2017;65(3):93–102. 链接1

[ 7 ] Geyer MB, Brentjens RJ. Review: current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy 2016;18(11):1393–409. 链接1

[ 8 ] Oluwole OO, Davila ML. At the bedside: clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. J Leukoc Biol 2016;100 (6):1265–72. 链接1

[ 9 ] Zhang BL, Qin DY, Mo ZM, Li Y, Wei W, Wang YS, et al. Hurdles of CAR-T cellbased cancer immunotherapy directed against solid tumors. Sci China Life Sci 2016;59(4):340–8. 链接1

[10] Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med 2017;68:139–52. 链接1

[11] Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front Immunol 2017;8:1850. 链接1

[12] US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for human somatic cell therapy and gene therapy. Hum Gene Ther 2001;12(3):303–14. 链接1

[13] European Medicines Agency. Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells. London: European Medicines Agency; 2010. 链接1

[14] European Medicines Agency. Guideline on human cell-based medicinal products. London: European Medicines Agency; 2007. 链接1

[15] China Food and Drug Administration. Technical guideline on human cell therapy research and quality control of preparation. Beijing: China Food and Drug Administration; 2003. Chinese. 链接1

[16] China Food and Drug Administration. Technical guideline on cell therapy product research and evaluation (trial). Beijing: China Food and Drug Administration; 2017. Chinese. 链接1

[17] Petricciani J, Hayakawa T, Stacey G, Trouvin JH, Knezevic I. Scientific considerations for the regulatory evaluation of cell therapy products. Biologicals 2017;50:20–6. 链接1

[18] Plavsic M. Q5D: derivation and characterization of cell substrates used for production of biotechnological/biological products. In: Teasdale A, Elder D, Nims RW, editors. ICH quality guidance: an implementation guide. New Jersey: John Wiley & Sons, Inc.; 1998. p. 375–93. 链接1

[19] World Health Organization. Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks. Geneva: World Health Organization; 2010. 链接1

[20] The United States Pharmacopeial Convention. Ancillary materials for cell, gene and tissue engineered products. In: The United States pharmacopeia and the national formulary: general chapter . Rockville: The United States Pharmacopeial Convention; 2012. p. 6850–8. 链接1

[21] Armstrong A. Advances in assay technologies for CAR T-cell therapies. BioPharm Int 2016;28(2):32–7. 链接1

[22] Piscopo NJ, Mueller KP, Das A, Hematti P, Murphy WL, Palecek SP, et al. Bioengineering solutions for manufacturing challenges in CAR T cells. Biotechnol J. Epub 2017 Sep 18.

[23] Gee AP. Manufacturing genetically modified T cells for clinical trials. Cancer Gene Ther 2015;22(2):67–71. 链接1

[24] Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009;32 (2):169–80. 链接1

[25] Tumaini B, Lee DW, Lin T, Castiello L, Stroncek DF, Mackall C, et al. Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy 2013;15(11):1406–15. 链接1

[26] Center for Drug Evaluation of the China Food and Drug Administration. Current considerations for non-clinical research and evaluation of CAR-T products. Beijing: Center for Drug Evaluation of the China Food and Drug Administration; 2018. Chinese. 链接1

[27] National Institutes for Food and Drug Control. Notice on the publication of ‘‘Considerations for quality control testing and non-clinical research of CAR-T cell therapy products”. Beijing: National Institutes for Food and Drug Control; 2018. Chinese. 链接1

[28] Siegler EL, Wang P. Preclinical models in chimeric antigen receptor-engineered T-cell therapy. Hum Gene Ther 2018;29(5):534–46. 链接1

[29] Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 2015;3(2):125–35. 链接1

[30] Cooper LJ, Al-Kadhimi Z, Serrano LM, Pfeiffer T, Olivares S, Castro A, et al. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 2005;105(4):1622–31. 链接1

[31] Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 2013;121(7):1165–74. 链接1

[32] Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 2013;19(12):3153–64. 链接1

[33] Tammana S, Huang X, Wong M, Milone MC, Ma L, Levine BL, et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum Gene Ther 2010;21(1):75–86. 链接1

[34] Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 2016;16(9):566–81. 链接1

[35] Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol 2016;13(6):370–83. 链接1

[36] Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013;3(4):388–98. 链接1

[37] Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 2016;30(2):492–500. 链接1

[38] Ghosh A, Smith M, James SE, Davila ML, Velardi E, Argyropoulos KV, et al. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat Med 2017;23(2):242–9. 链接1

[39] Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell SR. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol 2016;34(4):430–4. 链接1

[40] Almåsbak H, Walseng E, Kristian A, Myhre MR, Suso EM, Munthe LA, et al. Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther 2015;22(5):391–403. 链接1

[41] Li YH, Rao CM, Zhao Y, Gao K, Yuan LY, Han CM, et al. Study of requirements for quality control of recombinant adenovirus-mediated human endostatin. Chin J Cancer Biother 2005;12(2):138–42. Chinese. 链接1

[42] Li YH, Zang YC, Yuan LY, Shi XC, Rao CM, Wang JZ. Study on quality control methods and requirements of recombinant plasmid DNA expressing human plasminogen kringle 5. Chin J Pharm Anal 2008;28(5):661–6. Chinese. 链接1

[43] Fu ZH, Gao K, Li YH, Li X, Tai L, Wang L, et al. Analysis on quality of recombinant adeno-associated virus 2 encoding tumor necrosis factorrelated apoptosis-induced ligand. Chin J Biologicals 2015;28(5):501–4. Chinese. 链接1

[44] Wang X, Rivière I. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 2015;22(2):85–94. 链接1

[45] Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G, et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS ONE 2013;8(5):e64138. 链接1

[46] Center for Biologics Evaluation and Research [CBER] (United States). Guidance for industry: supplemental guidance on testing for replication-competent retrovirus in retroviral vector based gene therapy products and during followup of patients in clinical trials using retroviral vectors. Hum Gene Ther 2001;12(3):315–20. 链接1

[47] Cornetta K, Yao J, Jasti A, Koop S, Douglas M, Hsu D, et al. Replicationcompetent lentivirus analysis of clinical grade vector products. Mol Ther 2011;19(3):557–66. 链接1

[48] Long Z, Li LP, Grooms T, Lockey C, Nader K, Mychkovsky I, et al. Biosafety monitoring of patients receiving intracerebral injections of murine retroviral vector producer cells. Hum Gene Ther 1998;9(8):1165–72. 链接1

[49] Martineau D, Klump WM, McCormack JE, DePolo NJ, Kamantigue E, Petrowski M, et al. Evaluation of PCR and ELISA assays for screening clinical trial subjects for replication-competent retrovirus. Hum Gene Ther 1997;8(10):1231–41. 链接1

[50] Printz M, Reynolds J, Mento SJ, Jolly D, Kowal K, Sajjadi N. Recombinant retroviral vector interferes with the detection of amphotropic replication competent retrovirus in standard culture assays. Gene Ther 1995;2 (2):143–50. 链接1

[51] Forestell SP, Dando JS, Böhnlein E, Rigg RJ. Improved detection of replicationcompetent retrovirus. J Virol Methods 1996;60(2):171–8. 链接1

[52] Miller AD, Bonham L, Alfano J, Kiem HP, Reynolds T, Wolgamot G. A novel murine retrovirus identified during testing for helper virus in human gene transfer trials. J Virol 1996;70(3):1804–9. 链接1

[53] Escarpe P, Zayek N, Chin P, Borellini F, Zufferey R, Veres G, et al. Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 2003;8 (2):332–41. 链接1

[54] Farley DC, McCloskey L, Thorne BA, Tareen SU, Nicolai CJ, Campbell DJ, et al. Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors. Mol Ther Methods Clin Dev 2015;2:15017. 链接1

[55] Corre G, Dessainte M, Marteau JB, Dalle B, Fenard D, Galy A. ‘‘RCL-pooling assay”: a simplified method for the detection of replication-competent lentiviruses in vector batches using sequential pooling. Hum Gene Ther 2016;27(2):202–10. 链接1

[56] Bear AS, Morgan RA, Cornetta K, June CH, Binder-Scholl G, Dudley ME, et al. Replication-competent retroviruses in gene-modified T cells used in clinical trials: is it time to revise the testing requirements? Mol Ther 2012;20 (2):246–9. 链接1

[57] McGarrity GJ, Hoyah G, Winemiller A, Andre K, Stein D, Blick G, et al. Patient monitoring and follow-up in lentiviral clinical trials. J Gene Med 2013;15 (2):78–82. 链接1

[58] Marcucci KT, Jadlowsky JK, Hwang WT, Suhoski-Davis M, Gonzalez VE, Kulikovskaya I, et al. Retroviral and lentiviral safety analysis of genemodified T cell products and infused HIV and oncology patients. Mol Ther 2018;26(1):269–79. 链接1

[59] Cornetta K, Duffy L, Turtle CJ, Jensen M, Forman S, Binder-Scholl G, et al. Absence of replication-competent lentivirus in the clinic: analysis of infused T cell products. Mol Ther 2018;26(1):280–8. 链接1

[60] Hocquet D, Sauget M, Roussel S, Malugani C, Pouthier F, Morel P, et al. Validation of an automated blood culture system for sterility testing of cell therapy products. Cytotherapy 2014;16(5):692–8. 链接1

[61] Volokhov DV, Graham LJ, Brorson KA, Chizhikov VE. Mycoplasma testing of cell substrates and biologics: review of alternative non-microbiological techniques. Mol Cell Probes 2011;25(2–3):69–77. 链接1

[62] Uphoff CC, Drexler HG. Eradication of mycoplasma contaminations from cell cultures. Curr Protoc Mol Biol 2014;106. 28.5.1–12. 链接1

[63] Skrdlant LM, Armstrong RJ, Keidaisch BM, Lorente MF, DiGiusto DL. Detection of replication competent lentivirus using a qPCR assay for VSV-G. Mol Ther Methods Clin Dev 2017;8:1–7. 链接1

[64] Mallet L, Gisonni-Lex L. Need for new technologies for detection of adventitious agents in vaccines and other biological products. PDA J Pharm Sci Technol 2014;68(6):556–62. 链接1

[65] Mee ET, Preston MD, Minor PD, Schepelmann S; CS533 Study Participants. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing. Vaccine 2016;34(17):2035–43. 链接1

[66] McClenahan SD, Uhlenhaut C, Krause PR. Evaluation of cells and biological reagents for adventitious agents using degenerate primer PCR and massively parallel sequencing. Vaccine 2014;32(52):7115–21. 链接1

[67] US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for industry—potency tests for cellular and gene therapy products. Silver Spring: US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research; 2011. 链接1

[68] Bravery CA, Carmen J, Fong T, Oprea W, Hoogendoorn KH, Woda J, et al. Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 2013;15(1):9–19. 链接1

[69] Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu YH, et al. Immunological synapse predicts effectiveness of chimeric antigen receptor cells. Mol Ther 2018;26(4):963–75. 链接1

[70] Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2016;4:92–101. 链接1

[71] Revzin A, Maverakis E, Chang HC. Biosensors for immune cell analysis—a perspective. Biomicrofluidics 2012;6(2):021301. 链接1

[72] Baradez MO, Marshall D. The use of multidimensional image-based analysis to accurately monitor cell growth in 3D bioreactor culture. PLoS ONE 2011;6(10): e26104. 链接1

[73] Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R, et al. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 2013;10(3):228–38. 链接1

[74] Kuystermans D, Avesh M, Al-Rubeai M. Online flow cytometry for monitoring apoptosis in mammalian cell cultures as an application for process analytical technology. Cytotechnology 2016;68(3):399–408. 链接1

[75] Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab 2011;14(4):443–51. 链接1

[76] Lipsitz YY, Timmins NE, Zandstra PW. Quality cell therapy manufacturing by design. Nat Biotechnol 2016;34(4):393–400. 链接1

[77] Fesnak AD, Hanley PJ, Levine BL. Considerations in T cell therapy product development for B cell leukemia and lymphoma immunotherapy. Curr Hematol Malig Rep 2017;12(4):335–43. 链接1

[78] Lock D, Mockel-Tenbrinck N, Drechsel K, Barth C, Mauer D, Schaser T, et al. Automated manufacturing of potent CD20-directed chimeric antigen receptor T cells for clinical use. Hum Gene Ther 2017;28(10):914–25. 链接1

[79] Zhao Y, Stepto H, Schneider CK. Organization lentiviral vector standard: toward the production control and standardization of lentivirusbased gene therapy products. Hum Gene Ther Methods 2017;28 (4):205–14. 链接1

[80] Wang YS, Tian ZG. Construction and application of humanized immune system mice. Chin J Immunol 2016;32(3):289–98. Chinese. 链接1

[81] Siegler EL, Wang P. Preclinical models in chimeric antigen receptor-engineered T cell therapy. Hum Gene Ther 2018;29(5):534–46. 链接1

[82] Cheadle EJ, Hawkins RE, Batha H, O’Neill AL, Dovedi SJ, Gilham DE. Natural expression of the CD19 antigen impacts the long-term engraftment but not antitumor activity of CD19-specific engineered T cells. J Immunol 2010;184 (4):1885–96. 链接1

[83] Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016;3:16011. 链接1

相关研究