期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第2期 doi: 10.1016/j.eng.2018.12.007

地铁客室通风板模型数值模拟及实验研究

a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
University, Changsha 410075, China
b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China

收稿日期: 2018-10-11 修回日期: 2018-11-27 录用日期: 2018-12-29 发布日期: 2019-03-02

下一篇 上一篇

摘要

列车客室内流场研究是轨道列车设计及优化中的关键一环。内流场特性对车内温度分布及乘客舒适性有着显著影响。针对内流场的实验研究可获得较准确的结果,但需要大量时间和经济成本。数值模拟相对于实验可在更短时间内获得内流场特性。本文采用两种简化模型(多孔介质模型和多孔阶跃面模型)来提升轨道列车客室内流场数值模拟的计算效率。将两种简化模型及原始模型的数值模拟结果与实验数据进行比较。结果表明,多孔介质模型的结果与原始模型结果以及实验数据吻合得较好,其流场特性参数(温度和速度)的数值误差较小,最大数值误差为4.71%。在原始模型和多孔介质模型的数值模拟结果中,同一参数之间的数值误差在1% 以内。采用多孔介质模型替代原始模型进行地铁列车客室内流场数值模拟,所占用的计算资源相应减少了25%,且其结果保持了很好的准确性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Chow WK. Ventilation of enclosed train compartments in Hong Kong. Appl Energy 2002;71(3):161–70. 链接1

[ 2 ] Dehghan MH, Abdolzadeh M. Comparison study on air flow and particle dispersion in a typical room with floor, skirt boarding, and radiator heating systems. Build Environ 2018;133:161–77. 链接1

[ 3 ] Zhuang R, Li X, Tu J. CFD study of the effects of furniture layout on indoor air quality under typical office ventilation schemes. Build Simul 2014;7 (3):263–75. 链接1

[ 4 ] Pang L, Li P, Bai L, Liu D, Zhou Y, Yao J. Optimization of air distribution mode coupled interior design for civil aircraft cabin. Build Environ 2018;134:131–45. 链接1

[ 5 ] Zhang H, Dai L, Xu G, Li Y, Chen W, Tao W. Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: test/numerical model and validation. Appl Therm Eng 2009;29(10):2022–7. 链接1

[ 6 ] Zhang H, Dai L, Xu G, Li Y, Chen W, Tao W. Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part II: simulation results and discussion. Appl Therm Eng 2009;29(10):2028–36. 链接1

[ 7 ] Bianco V, Manca O, Nardini S, Roma M. Numerical investigation of transient thermal and fluidynamic fields in an executive aircraft cabin. Appl Therm Eng 2009;29(16):3418–25. 链接1

[ 8 ] Mao Y, Wang J, Li J. Experimental and numerical study of air flow and temperature variations in an electric vehicle cabin during cooling and heating. Appl Therm Eng 2018;137:356–67. 链接1

[ 9 ] Dullinger C, Struckl W, Kozek M. A modular thermal simulation tool for computing energy consumption of HVAC units in rail vehicles. Appl Therm Eng 2015;78:616–29. 链接1

[10] Hofstädter RN, Zero T, Dullinger C, Richter G, Kozek M. Heat capacity and heat transfer coefficient estimation for a dynamic thermal model of rail vehicles. Math Comput Model Dyn Syst 2017;23(5):439–52. 链接1

[11] Luger C, Kallinovsky J, Rieberer R. Identification of representative operating conditions of HVAC systems in passenger rail vehicles based on sampling virtual train trips. Adv Eng Inform 2016;30(2):157–67. 链接1

[12] Schmeling D, Bosbach J. On the influence of sensible heat release on displacement ventilation in a train compartment. Build Environ 2017;125:248–60. 链接1

[13] Li W, Sun J. Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment. Appl Therm Eng 2013;50 (1):37–45. 链接1

[14] Liu W, Deng Q, Huang W, Liu R. Variation in cooling load of a moving airconditioned train compartment under the effects of ambient conditions and body thermal storage. Appl Therm Eng 2011;31(6–7):1150–62. 链接1

[15] Suárez C, Iranzo A, Salva JA, Tapia E, Barea G, Guerra J. Parametric investigation using computational fluid dynamics of the HVAC air distribution in a railway vehicle for representative weather and operating conditions. Energies 2017;10 (8):1074–86. 链接1

[16] Wang H, Lin M, Chen Y. Performance evaluation of air distribution systems in three different China railway high-speed train cabins using numerical simulation. Build Simul 2014;7(6):629–38. 链接1

[17] Aliahmadipour M, Abdolzadeh M, Lari K. Air flow simulation of HVAC system in compartment of a passenger coach. Appl Therm Eng 2017;123:973–90. 链接1

[18] BS EN 14750-1: Railway applications—air conditioning for urban and suburban rolling stock. Part 1: comfort parameters. British standard. London: British Standards Institution; 2006.

[19] BS EN 14750-2: Railway applications—air conditioning for urban and suburban rolling stock. Part 2: type tests. British standard. London: British Standards Institution; 2006.

[20] Chen Z, Liu T, Zhou X, Niu JQ. Impact of ambient wind on aerodynamic performance when two trains intersect inside a tunnel. J Wind Eng Ind Aerodyn 2017;169:139–55. 链接1

[21] Niu J, Zhou D, Liang X, Liu T, Liu S. Numerical study on the aerodynamic pressure of a metro train running between two adjacent platforms. Tunn Undergr Space Technol 2017;65:187–99. 链接1

[22] Yan Y, Li X, Tu J. Effects of passenger thermal plume on the transport and distribution characteristics of airborne particles in an airliner cabin section. Sci Technol Built Environ 2016;22(2):153–63. 链接1

[23] Dehne T, Lange P, Volkmann A, Schmeling D, Konstantinov M, Bosbach J. Vertical ventilation concepts for future passenger cars. Build Environ 2018;129:142–53. 链接1

[24] Yang L, Li M, Li X, Tu J. The effects of diffuser type on thermal flow and contaminant transport in high-speed train (HST) cabins—a numerical study. Int J Vent 2018;17(1):48–62. 链接1

[25] Gray DD, Giorgini A. The validity of the Boussinesq approximation for liquids and gases. Int J Heat Mass Transf 1976;19(5):545–51. 链接1

[26] Bacharoudis E, Vrachopoulos MG, Koukou MK, Margaris D, Filios AE, Mavrommatis SA. Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux. Appl Therm Eng 2007;27(13):2266–75. 链接1

[27] Teitel M, Dvorkin D, Haim Y, Tanny J, Seginer I. Comparison of measured and simulated flow through screens: effects of screen inclination and porosity. Biosyst Eng 2009;104(3):404–16. 链接1

[28] Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH. Porous and complex flow structures in modern technologies. New York: Springer; 2004. 链接1

[29] Fluent help. Pittsburgh: ANSYS Inc.; 2017.

[30] Yang M, Du J, Li Z, Huang S, Zhou D. Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements. PLoS ONE 2017;12(1):e0169471. 链接1

[31] Zhang L, Yang M, Liang X, Zhang J. Oblique tunnel portal effects on train and tunnel aerodynamics based on moving model tests. J Wind Eng Ind Aerodyn 2017;167:128–39. 链接1

相关研究