期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.01.006

高压纳米X射线成像技术的应用

a Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
b Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
c Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

收稿日期: 2018-07-09 修回日期: 2018-09-17 录用日期: 2019-01-16 发布日期: 2019-05-07

下一篇 上一篇

摘要

纳米级透射X射线显微镜(nanoscale transmission X-ray microscopy, nanoTXM)与金刚石对顶砧(diamond anvil cell, DAC)的结合,具有在极端条件下对材料进行高分辨率、非破坏性三维成像的巨大潜能。在本文中,我们讨论了当前高分辨率X射线成像的发展状况及其在第三代同步加速器X射线源中基于DAC的高压nanoTXM实验中的应用,包括为成功测量所需要的技术方面的考虑。接下来,展示了一些近期的原位高压测量结果,这些测量研究了无定形或低结晶材料的状态方程(equations of state, EOS)以及压力诱导的相变和电子变化。这些结果表明从凝聚态物理和固态化学到材料科学和行星内部研究,nanoTXM技术在广泛的研究领域中具有应用潜力。最后,对于这项振奋人心的技术,我们讨论了它的未来发展方向以及提高其在高压科学中更宽泛适用性的机遇。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Dubrovinsky L, Dubrovinskaia N, Bykova E, Bykov M, Prakapenka V, Prescher C, et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 2015;525(7568):226–9. 链接1

[ 2 ] Mao HK, Mao WL. Theory and practice—diamond-anvil cells and probes for high P-T mineral physics studies. In: Price GD, editor. Treatise on geophysics: mineral physics. Amsterdam: Elsevier; 2007. p. 231–68. 链接1

[ 3 ] Frankel RI. Centennial of Röntgen’s discovery of X-rays. West J Med 1996;164 (6):497–501. 链接1

[ 4 ] Du Plessis A, Le Roux SG, Guelpa A. Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud Nondestr Test Eval 2016;6:17–25. 链接1

[ 5 ] Landis EN, Keane DT. X-ray microtomography. Mater Charact 2010;61 (12):1305–16. 链接1

[ 6 ] Liu Y, Kiss AM, Larsson DH, Yang F, Pianetta P. To get the most out of high resolution X-ray tomography: a review of the post-reconstruction analysis. Spectrochim Acta B At Spectrosc 2016;117:29–41. 链接1

[ 7 ] Bautz W, Kalender W, Godfrey N. Hounsfield and his effect on radiology. Radiologe 2005;45(4):350–5. German. 链接1

[ 8 ] Sakdinawat A, Attwood D. Nanoscale X-ray imaging. Nat Photonics 2010;4 (12):840–8. 链接1

[ 9 ] Chang C, Sakdinawat A. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. Nat Commun 2014;5(1):4243. 链接1

[10] Shi CY, Zhang L, Yang W, Liu Y, Wang J, Meng Y, et al. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat Geosci 2013;6(11):971–5. 链接1

[11] Larabell CA, Nugent KA. Imaging cellular architecture with X-rays. Curr Opin Struct Biol 2010;20(5):623–31. 链接1

[12] Wei C, Xia S, Huang H, Mao Y, Pianetta P, Liu Y. Mesoscale battery science: the behavior of electrode particles caught on a multispectral X-ray camera. Acc Chem Res 2018;51(10):2484–92. 链接1

[13] Andrews JC, Weckhuysen BM. Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. Chem Phys Chem 2013;14 (16):3655–66. 链接1

[14] Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat 2011;18:773–81. 链接1

[15] Liu Y, Meirer F, Wang J, Requena G, Williams P, Nelson J, et al. 3D elemental sensitive imaging using transmission X-ray microscopy. Anal Bioanal Chem 2012;404(5):1297–301. 链接1

[16] Andrews JC, Almeida E, Van der Meulen MC, Alwood JS, Lee C, Liu Y, et al. Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal 2010;16(3):327–36. 链接1

[17] Liu Y, Meirer F, Williams PA, Wang J, Andrews JC, Pianetta P. TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J Synchrotron Radiat 2012;19(Pt 2):281–7. 链接1

[18] Gürsoy D, De Carlo F, Xiao X, Jacobsen C. TomoPy: a framework for the analysis of synchrotron tomographic data. J Synchrotron Radiat 2014;21:1188–93. 链接1

[19] Yang X, De Carlo F, Phatak C, Gürsoy D. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography. J Synchrotron Radiat 2017;24:469–75. 链接1

[20] Yang Y, Yang F, Hingerl FF, Xiao X, Liu Y, Wu Z, et al. Registration of the rotation axis in X-ray tomography. J Synchrotron Radiat 2015;22(2):452–7. 链接1

[21] Guizar-Sicairos M, Boon JJ, Mader K, Diaz A, Menzel A, Bunk O. Quantitative interior X-ray nanotomography by a hybrid imaging technique. Optica 2015;2 (3):259–66. 链接1

[22] Gürsoy D, Hong YP, He K, Hujsak K, Yoo S, Chen S, et al. Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection. Sci Rep 2017;7(1):11818. 链接1

[23] Yu H, Xia S, Wei C, Mao Y, Larsson D, Xiao X, et al. Automatic projection image registration for nanoscale X-ray tomographic reconstruction. J Synchrotron Radiat 2018;25:1819–26. 链接1

[24] Liu Y, Wang J, Azuma M, Mao WL, Yang W. Five-dimensional visualization of phase transition in BiNiO3 under high pressure. Appl Phys Lett 2014;104 (4):043108. 链接1

[25] Wang JY, Yang W, Wang S, Xiao X, De Carlo F, Liu Y, et al. High pressure nanotomography using an iterative method. J Appl Phys 2012;111(11):112626. 链接1

[26] Duan X, Yang F, Antono E, Yang W, Pianetta P, Ermon S, et al. Unsupervised data mining in nanoscale X-ray spectro-microscopic study of NdFeB magnet. Sci Rep 2016;6(1):34406. 链接1

[27] Xu Y, Hu E, Zhang K, Wang X, Borzenets V, Sun Z, et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Lett 2017;2(5):1240–5. 链接1

[28] Lin Y, Zeng Q, Yang W, Mao WL. Pressure-induced densification in GeO2 glass: a transmission X-ray microscopy study. Appl Phys Lett 2013;103(26):261909. 链接1

[29] Zeng Q, Kono Y, Lin Y, Zeng Z, Wang J, Sinogeikin SV, et al. Universal fractional noncubic power law for density of metallic glasses. Phys Rev Lett 2014;112 (18):185502. 链接1

[30] Liu H, Wang L, Xiao X, De Carlo F, Feng J, Mao HK, et al. Anomalous highpressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography. Proc Natl Acad Sci USA 2008;105(36):13229–34. 链接1

[31] Zeng Q, Lin Y, Liu Y, Zeng Z, Shi CY, Zhang B, et al. General 2.5 power law of metallic glasses. Proc Natl Acad Sci USA 2016;113(7):1714–8. 链接1

[32] Chen DZ, Shi CY, An Q, Zeng Q, Mao WL, Goddard 3rd WA, et al. Fractal atomiclevel percolation in metallic glasses. Science 2015;349(6254):1306–10. 链接1

[33] Lin Y, Zhang L, Mao HK, Chow P, Xiao Y, Baldini M, et al. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys Rev Lett 2011;107 (17):175504. 链接1

[34] Lee SK, Lin JF, Cai YQ, Hiraoka N, Eng PJ, Okuchi T, et al. X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth’s mantle. Proc Natl Acad Sci USA 2008;105(23):7925–9. 链接1

[35] Murakami M, Goncharov AF, Hirao N, Masuda R, Mitsui T, Thomas SM, et al. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nat Commun 2014;5(1):5428. 链接1

[36] Petitgirard S, Malfait WJ, Sinmyo R, Kupenko I, Hennet L, Harries D, et al. Fate of MgSiO3 melts at core-mantle boundary conditions. Proc Natl Acad Sci USA 2015;112(46):14186–90. 链接1

[37] Sato T, Funamori N. High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys Rev B Condens Matter Mater Phys 2010;82(18):184102. 链接1

[38] Wu M, Liang Y, Jiang JZ, Tse JS. Structure and properties of dense silica glass. Sci Rep 2012;2(1):398. 链接1

[39] Zha C, Hemley RJ, Mao H, Duffy TS, Meade C. Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B Condens Matter 1994;50(18):13105–12. 链接1

[40] Sato T, Funamori N. Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Phys Rev Lett 2008;101(25):255502. 链接1

[41] Murakami M, Bass JD. Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass. Phys Rev Lett 2010;104(2):025504. 链接1

[42] Williams Q, Jeanloz R. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science 1988;239 (4842):902–5. 链接1

[43] Stixrude L, Karki B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 2005;310(5746):297–9. 链接1

[44] Shen G, Mei Q, Prakapenka VB, Lazor P, Sinogeikin S, Meng Y, et al. Effect of helium on structure and compression behavior of SiO2 glass. Proc Natl Acad Sci USA 2011;108(15):6004–7. 链接1

[45] Clark AN, Lesher CE, Jacobsen SD, Wang Y. Anomalous density and elastic properties of basalt at high pressure: reevaluating of the effect of melt fraction on seismic velocity in the Earth’s crust and upper mantle. J Geophys Res Solid Earth 2016;121(6):4232–48. 链接1

[46] Ghosh DB, Karki BB, Stixrude L. First-principles molecular dynamics simulations of MgSiO3 glass: structure, density, and elasticity at high pressure. Am Mineral 2014;99(7):1304–14. 链接1

[47] Jiang H, Xu R, Chen CC, Yang W, Fan J, Tao X, et al. Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution. Phys Rev Lett 2013;110(20):205501. 链接1

[48] Miao J, Ishikawa T, Robinson IK, Murnane MM. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 2015;348 (6234):530–5. 链接1

[49] Yang W, Huang X, Harder R, Clark JN, Robinson IK, Mao HK. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat Commun 2013;4(1):1680. 链接1

[50] Eriksson M, Van der Veen JF, Quitmann C. Diffraction-limited storage rings— a window to the science of tomorrow. J Synchrotron Radiat 2014;21: 837–42. 链接1

[51] McNeil BWJ, Thompson NR. X-ray free-electron lasers. Nat Photonics 2010;4 (12):814–21. 链接1

相关研究