期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.02.004

高压多晶X射线衍射方法的发展及其在地球深部研究中的应用

a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China

b HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

c Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA

收稿日期: 2018-09-03 修回日期: 2018-11-19 录用日期: 2019-02-01 发布日期: 2019-04-06

下一篇 上一篇

摘要

下地幔占地球体积一半以上。在高温高压下对下地幔真实组分所开展的矿物学和岩石学实验是了解深部地幔演化过程的必要途径。激光加热的金刚石对顶压砧(laser-heated diamond anvil cell, LHDAC)是开展这类高温高压实验最常用的工具,实验产物通常包括从上百纳米到数微米尺寸不一的大量晶粒所组成的多相集合体。这些下地幔相的晶体结构往往不能在卸压后保存下来,因此必须对它们进行原位表征。相对于同步辐射光源设备中可用的聚焦X射线光斑尺寸(3~5 μm),晶粒尺寸要小一个量级,所得到的X射线衍射(X-ray diffraction, XRD)图谱通常显示为衍射斑点和衍射环的混合。由于多相衍射峰重叠严重,粉晶X射线衍射法无法对新相和弱相进行鉴定,因此采用传统XRD技术测定高温高压下多相混合物非常困难。我们最近在高压研究中所发展的同步辐射多晶X射线衍射法可以通过测定多相组合中成千上百个晶粒各自的晶面取向,使多相体系中单晶的指标化成为可能。一旦完成指标化,多晶混合物中的每一个晶粒都可以看作是单晶。因此,我们可以同时确定多相体系中新相和弱相的晶体结构。随着这一新方法的发展,我们开辟了深下地幔高温高压条件下的结晶学新领域。本文阐述了多相体系研究中的关键技术挑战,并通过高压多相X射线衍射法的成功应用实例,论证了该方法的独特能力。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Ricolleau A, Fei Y, Cottrell E, Watson H, Deng L, Zhang L, et al. Density profile of pyrolite under the lower mantle conditions. Geophys Res Lett 2009;36(6):36. 链接1

[ 2 ] Irifune T, Shinmei T, McCammon CA, Miyajima N, Rubie DC, Frost DJ. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 2010;327(5962):193–5. 链接1

[ 3 ] Hirose K, Fei Y, Ma Y, Mao HK. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 1999;397(6714):53–6. 链接1

[ 4 ] Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y, et al. Stability of a hydrous d-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett 2014;401:12–7. 链接1

[ 5 ] Bertka CM, Fei Y. Mineralogy of the Martian interior up to core-mantle boundary pressures. J Geophys Res Solid Earth 1997;102(B3):5251–64. 链接1

[ 6 ] Lavina B, Meng Y. Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe5O6. Sci Adv 2015;1(5):e1400260. 链接1

[ 7 ] Mao HK, Bell PM. High-pressure physics: sustained static generation of 1.36 to 1.72 megabars. Science 1978;200:1145–7. 链接1

[ 8 ] Tateno S, Hirose K, Ohishi Y, Tatsumi Y. The structure of iron in Earth’s inner core. Science 2010;330(6002):359–61. 链接1

[ 9 ] Lay T. Sharpness of the D00 discontinuity beneath the Cocos Plate: implications for the perovskite to post-perovskite phase transition. Geophys Res Lett 2008;35(3):35. 链接1

[10] Panning M, Romanowicz B. Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science 2004;303(5656):351–3. 链接1

[11] Su W, Woodward RL, Dziewonski AM. Degree 12 model of shear velocity heterogeneity in the mantle. J Geophys Res 1994;99(B4):6945–80. 链接1

[12] Miletich R, Allan DR, Kuhs WF. High-pressure single-crystal techniques. Rev Mineral Geochem 2000;41(1):445–519. 链接1

[13] Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, et al. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 2013;33(3):466–84. 链接1

[14] Dubrovinsky L, Boffa-Ballaran T, Glazyrin K, Kurnosov A, Frost D, Merlini M, et al. Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees. High Press Res 2010;30(4):620–33. 链接1

[15] Frost DJ, Fei Y. Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth 1998;103(B4):7463–74. 链接1

[16] Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y. Post-perovskite phase transition in MgSiO3. Science 2004;304(5672):855–8. 链接1

[17] Oganov AR, Ono S. Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth’s D00 layer. Nature 2004;430(6998):445–8. 链接1

[18] Mao WL, Meng Y, Shen G, Prakapenka VB, Campbell AJ, Heinz DL, et al. Ironrich silicates in the Earth’s D00 layer. Proc Natl Acad Sci USA 2005;102 (28):9751–3. 链接1

[19] Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 2014;7(3):224–7. 链接1

[20] Zhang W, Oganov AR, Goncharov AF, Zhu Q, Boulfelfel SE, Lyakhov AO, et al. Unexpected stable stoichiometries of sodium chlorides. Science 2013;342 (6165):1502–5. 链接1

[21] Hirose K, Takafuji N, Sata N, Ohishi Y. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 2005;237(1– 2):239–51. 链接1

[22] Shen G, Mao HK. High-pressure studies with x-rays using diamond anvil cells, reports on progress in physics. Physical Society 2017;80:016101. 链接1

[23] Duffy TS. Synchrotron facilities and the study of the Earth’s deep interior. Rep Prog Phys 2005;68(8):1811–59. 链接1

[24] Mao HK, Chen B, Chen J, Li K, Lin JF, Yang W, et al. Recent advances in highpressure science and technology. Matter Radiat Extremes 2016;1(1):59–75. 链接1

[25] Zhang L, Meng Y, Dera P, Yang W, Mao WL, Mao HK. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite. Proc Natl Acad Sci USA 2013;110 (16):6292–5. 链接1

[26] Nisr C, Ribárik G, Ungár T, Vaughan GBM, Cordier P, Merkel S. High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 post-perovskite at 90 GPa. J Geophys Res 2012;117(B3):B03201. 链接1

[27] Schmidt S. GrainSpotter: a fast and robust polycrystalline indexing algorithm. J Appl Cryst 2014;47(1):276–84. 链接1

[28] Sørensen HO, Schmidt S, Wright JP, Vaughan GBM, Techert S, Garman EF, et al. Multigrain crystallography. Z Kristallogr 2012;227(1):63–78. 链接1

[29] Zhang L, Meng Y, Yang W, Wang L, Mao WL, Zeng QS, et al. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science 2014;344 (6186):877–82. 链接1

[30] Zhang L, Popov D, Meng Y, Wang J, Ji C, Li B, et al. In-situ crystal structure determination of seifertite SiO2 at 129 GPa: studying a minor phase near Earth’s core-mantle boundary. Am Mineral 2016;101(1):231–4. 链接1

[31] Merlini M, Hanfland M, Salamat A, Petitgirard S, Müller H. The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions. Am Mineral 2015;100(8–9):2001–4. 链接1

[32] Oxford Diffraction Ltd. CrysAlis Red. Version p171.29.2 [software]; 2006.

[33] Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010;D66:125–32. 链接1

[34] Dera P. GSE-ADA data analysis program for monochromatic single crystal diffraction with area detector. Argonne: GSECARS; 2007. 链接1

[35] Sheldrick GM. A short history of SHELX. Acta Crystallogr A 2008;A64:112–22. 链接1

[36] Zhang L, Yuan H, Meng Y, Mao HK. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH. Proc Natl Acad Sci USA 2018;115 (12):2908–11. 链接1

[37] Lundin S, Catalli K, Santillán J, Shim SH, Prakapenka VB, Kunz M, et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys Earth Planet Inter 2008;168(1–2):97–102. 链接1

[38] Fei Y, Zhang L, Corgne A, Watson H, Ricolleau A, Meng Y, et al. Spin transition and equations of state of (Mg,Fe)O solid solutions. Geophys Res Lett 2007;34 (17):L17307. 链接1

[39] Zhang L, Meng Y, Mao H. Unit cell determination of coexisting postperovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa. Prog Earth Planet Sci 2016;3(1):13. 链接1

[40] Miyahara M, Sakai T, Ohtani E, Kobayashi Y, Kamada S, Kondo T, et al. Application of FIB system to ultra-high-pressure Earth science. J Mineral Petrol Sci 2008;103(2):88–93. 链接1

相关研究