期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.02.005

H2 对Pt-Ba-Ce /γ-Al2O3 催化剂NOx 存储和还原机理的影响研究

School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

收稿日期: 2018-04-17 修回日期: 2018-08-20 录用日期: 2019-02-15 发布日期: 2019-04-19

下一篇 上一篇

摘要

本研究采用浸渍法制备了Pt-Ba-Ce/γ-Al2O3催化剂,利用实验评价了H2 对NSR(NOx storage and reduction)催化剂存储和还原机理的影响,并采用综合表征技术研究了Pt-Ba-Ce /γ-Al2O3 催化剂的理化性能。结果表明,透射电子显微镜(TEM)显示X 射线衍射(XRD)光谱中观察到的PtOx、CeO2 和BaCO3 峰很好地分散在γ-Al2O3 上,X 射线光电子能谱(XPS)检测到Ce3+ 和Ce4+ 之间的差异,Ce3+ 和Ce4+ 促进了活性氧在催化剂上的迁移。在NOx 完全存储- 还原实验中,NO2 产量的增加使NOx 的存储能力在250~350 ℃ 的温度范围内大大提高, 在350 ℃ 达到最大值315.3 μmol·g–1。在NOx 吸附和脱附循环实验中,随着H2暴露时间(30 s、45 s 和60 s)延长,NOx 的存储效率和转化率增加。当稀燃和富燃持续时间分别为240 s 和60 s 时,催化剂的NOx 最大转化率达到83.5%。适当增加H2量加速了硝酸盐或亚硝酸盐的分解,有利于NOx 存储-还原,并促进了下一循环NSR吸附位点的再生。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G. NOx storage in barium-containing catalysts. J Catal 1999;183(2):196–209. 链接1

[ 2 ] Rico-Pérez V, García-Cortés JM, Bueno-López A. NOx reduction to N2 with commercial fuel in a real diesel engine exhaust using a dual bed of Pt/beta zeolite and RhOx/ceria monolith catalysts. Chem Eng Sci 2013;104(50):557–64. 链接1

[ 3 ] Park S, Choi B, Kim H, Kim JH. Hydrogen production from dimethyl ether over Cu/c-Al2O3 catalyst with zeolites and its effects in the lean NOx trap performance. Int J Hydrogen Energy 2012;37(6):4762–73. 链接1

[ 4 ] Dai H. Environmental catalysis: a solution for the removal of atmospheric pollutants. Sci Bull 2015;60(19):1708–10. 链接1

[ 5 ] Wu W, Wang X, Jin S, Wang R. LaCoO3 perovskite in Pt/LaCoO3/K/Al2O3 for the improvement of NOx storage and reduction performances. RSC Adv 2016;6 (78):74046–52. 链接1

[ 6 ] Harold MP. NOx storage and reduction in lean burn vehicle emission control: a catalytic engineer’s playground. Curr Opin Chem Eng 2012;1(3):303–11. 链接1

[ 7 ] He X, Meng M, He J, Zou Z, Li X, Li Z, et al. A potential substitution of noble metal Pt by perovskite LaCoO3 in ZrTiO4 supported lean-burn NOx trap catalysts. Catal Commun 2010;12(3):165–8. 链接1

[ 8 ] Rui Y, Zhang Y, Liu D, Meng M, Jiang Z, Zhang S, et al. A series of ceria supported lean-burn NOx trap catalysts LaCoO3/K2CO3/CeO2 using perovskite as active component. Chem Eng J 2015;260:357–67. 链接1

[ 9 ] Perng CCY, Easterling VG, Harold MP. Fast lean-rich cycling for enhanced NOx conversion on storage and reduction catalysts. Catal Today 2014;231 (8):125–34. 链接1

[10] Kabin KS, Muncrief RL, Harold MP, Li Y. Dynamics of storage and reaction in a monolith reactor: lean NOx reduction. Chem Eng Sci 2004;59(22):5319–27. 链接1

[11] Mei X, Wang J, Yang R, Yan Q, Wang Q. Synthesis of Pt doped Mg-Al layered double oxide/graphene oxide hybrid as novel NOx storage-reduction catalyst. RSC Adv 2015;5(95):78061–70. 链接1

[12] Atribak I, Bueno-López A, García-García A. Combined removal of diesel soot particulates and NOx over CeO2–ZrO2 mixed oxides. J Catal 2008;259 (1):123–32. 链接1

[13] Casapu M, Grunwaldt JD, Maciejewski M, Baiker A, Eckhoff S, Gobel U, et al. The fate of platinum in Pt/Ba/CeO2 and Pt/Ba/Al2O3 catalysts during thermal aging. J Catal 2007;251(1):28–38. 链接1

[14] Roy S, Baiker A. NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. Chem Rev 2009;109 (9):4054–91. 链接1

[15] Caglar B, Uner D. NO oxidation and NOx storage over Ce–Zr mixed oxide supported catalysts. Catal Commun 2011;12(6):450–3. 链接1

[16] Le Phuc N, Courtois X, Can F, Royer S, Marecot P, Duprez D. NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part II: influence of Ce and Mn– Ce addition. Appl Catal B 2011;102(3):362–71. 链接1

[17] Lin S, Yang L, Yang X, Zhou R. Redox properties and metal-support interaction of Pd/Ce0.67Zr0.33O2–Al2O3 catalyst for CO, HC and NOx elimination. Appl Surf Sci 2014;305:642–9. 链接1

[18] AL-Harbi M, Epling WS. Effects of different regeneration timing protocols on the performance of a model NOx storage/reduction catalyst. Catal Today 2010;151(3–4):347–53. 链接1

[19] Masdrag L, Courtois X, Can F, Duprez D. Effect of reducing agent (C3H6, CO, H2) on the NOx conversion and selectivity during representative lean/rich cycles over monometallic platinum based NSR catalysts. Influence of the support formulation. Appl Catal B 2014;146(5):12–23. 链接1

[20] Abdulhamid H, Fridell E, Skoglundh M. Influence of the type of reducing agent (H2, CO, C3H6, and C3H8) on the reduction of stored NOx in a Pt/BaO/Al2O3 model catalyst. Top Catal 2004;30(1–4):161–8. 链接1

[21] Ansari F, Sobhani A, Salavati-Niasari M. Simple sol–gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J Colloid Interface Sci 2018;514:723–32. 链接1

[22] Amiri O, Mir N, Ansari F, Salavati-Niasari M. Design and fabrication of a high performance inorganic tandem solar cell with 11.5% conversion efficiency. Electrochim Acta 2017;252:315–21. 链接1

[23] Mahdiani M, Sobhani A, Ansari F, Salavati-Niasari M. Lead hexaferrite nanostructures: green amino acid sol–gel auto-combustion synthesis, characterization and considering magnetic property. J Mater Sci Mater Electron 2017;28(23):17627–34. 链接1

[24] Mahdiani M, Soofivand F, Ansari F, Salavati-Niasari M. Grafting of CuFe12O19 nanoparticles on CNT and graphene: eco-friendly synthesis, characterization and photocatalytic activity. J Clean Prod 2018;176:1185–97. 链接1

[25] Shi C, Ji Y, Graham UM, Jacobs G, Crocker M, Zhang Z, et al. NOx storage and reduction properties of model ceria-based lean NOx trap catalysts. Appl Catal B 2012;119–120:183–96. 链接1

[26] Shinjoh H, Hatanaka M, Nagai Y, Tanabe T, Takahashi N, Yoshida T, et al. Suppression of noble metal sintering based on the support anchoring effect and its application in automotive three-way catalysis. Top Catal 2009;52:1967. 链接1

[27] Shi C, Zhang ZS, Crocker M, Xu L, Wang C, Au C, et al. Non-thermal plasmaassisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst. Catal Today 2013;211(4):96–103. 链接1

[28] Peuckert M. XPS investigation of surface oxidation layers on a platinum electrode in alkaline solution. Electrochim Acta 1984;29(10): 1315–20. 链接1

[29] Zhang ZS, Chen BB, Wang XK, Xu L, Au C, Shi C, et al. NOx storage and reduction properties of model manganese-based lean NOx trap catalysts. Appl Catal B 2015;165:232–44. 链接1

[30] Jing L, Xu Z, Sun X, Shang J, Cai W. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl Surf Sci 2001;180(3–4): 308–14. 链接1

[31] Kang M, Park ED, Kim JM, Yie JE. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A 2007;327(2):261–9. 链接1

[32] Persson K, Ersson A, Jansson K, Fierro J, Jaras S. Influence of molar ratio on Pd–Pt catalysts for methane combustion. J Catal 2006;243(1):14–24. 链接1

[33] Infantes-Molina A, Righini L, Castoldi L, Loricera CV, Fierro JLG, Sin A, et al. Characterization and reactivity of Ce-promoted PtBa lean NOx trap catalysts. Catal Today 2012;197(1):178–89. 链接1

[34] Lietti L, Forzatti P, Nova I, Tronconi E. NOx storage reduction over Pt–Ba/c-Al2O3 catalyst. J Catal 2001;204(1):175–91. 链接1

[35] Symalla MO, Drochner A, Vogel H, Büchel R, Pratsinis SE, Baiker A. Structure and NOx storage behaviour of flame-made BaCO3 and Pt/BaCO3 nanoparticles. Appl Catal B Environ 2009;89(1–2):41–8. 链接1

[36] Broqvist P, Panas I, Grönbeck H. Toward a realistic description of NOx storage in BaO: the aspect of BaCO3. J Phys Chem B 2005;109(19):9613–21. 链接1

[37] Castoldi L, Righini L, Matarrese R, Lietti L, Forzatti P. Mechanistic aspects of the release and the reduction of NOx stored on Pt–Ba/Al2O3. J Catal 2015;328:270–9. 链接1

[38] Mudiyanselage K, Weaver JF, Szanyi J. Catalytic decomposition of Ba(NO3)2 on Pt(111). J Phys Chem C 2011;115(13):5903–9. 链接1

相关研究