期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.03.003

高温材料量热法的新进展

Peter A. Rock Thermochemistry Laboratory & NEAT ORU, University of California, Davis, CA 95616, USA

收稿日期: 2018-07-18 修回日期: 2019-02-21 录用日期: 2019-03-18 发布日期: 2019-04-18

下一篇 上一篇

图片

图1

图2

图3

图4

参考文献

[ 1 ] Levchenko A, Marchin L, Parlouer PL, Navrotsky A. The new high-temperature Setaram AlexSYS calorimeter and thermochemistry of a-CuMnO4. ITAS Bull 2009;2:91–7. 链接1

[ 2 ] Navrotsky A. Progress and new directions in calorimetry: a 2014 perspective. J Am Ceram 2014;97(11):3349–59. 链接1

[ 3 ] Shi Q, Boerio-Goates J, Woodfield BF. An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter. J Chem Thermodyn 2011;43(8):1263–9. 链接1

[ 4 ] Hong QJ, Ushakov SV, Navrotsky A, van de Walle A. Combined computational and experimental investigation of the refractory properties of La2Zr2O7. Acta Mater 2015;84:275–82. 链接1

[ 5 ] Zhang L, Solomon JM, Asta MD, Navrotsky A. A combined calorimetric and computational study of the energetics of rare earth substituted UO2 systems. Acta Mater 2015;97:191–8. 链接1

[ 6 ] Kapush D, Ushakov SV, Navrotsky A, Hong Q, Liu H, van de Walle A. A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000 C using drop-n-catch calorimetry and first principles calculations. Acta Mater 2017;124:204–9. 链接1

[ 7 ] Luo X, Zhou W, Ushakov SV, Navrotsky A, Demkov AA. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys 2009;80(13):134119. 链接1

[ 8 ] O’Hare PAG. Combustion calorimetry. In: Kaufmann EN, editor. Characterization of materials. New Jersey: John Wiley & Sons, Inc.; 2003. p. 373–83. 链接1

[ 9 ] Leonidov VY, O’Hare PAG. Fluorine combustion calorimetry: progress in recent years and possibilities of further development. Pure Appl Chem 1992;64 (1):103–10. 链接1

[10] Kleppa OJ, Guo Q, Meschel SV. Recent work in high-temperature reaction calorimetry of intermetallic compounds and related phases. In: Nash P, Sundman B, editors. Applications of thermodynamics in the synthesis and processing of materials. Pittsburgh: Minerals, Metals & Materials Society; 1995. p. 285–302. 链接1

[11] Colinet C, Pasturel A. High-temperature solution calorimetry. In: Marsh KN, O’Hare PAG, editors. Experimental thermodynamics. New Jersey: John Wiley & Sons, Inc.; 1994. p. 89–129. 链接1

[12] Cordfunke EHP, Ouweltjes W. Solution calorimetry for the determination of enthalpies of reaction of inorganic substances at 298.15 K. In: Marsh KN, O’Hare PAG, editors. Experimental thermodynamics. New Jersey: John Wiley & Sons, Inc.; 1994. p. 25–42. 链接1

[13] Westrum EF Jr. Adiabatic calorimetric determination of phase behavior. Fluid Phase Equilib 1986;27:221–31. 链接1

[14] Blandamer MJ, Cullis PM, Gleeson PT. Three important calorimetric applications of a classic thermodynamic equation. Chem Soc Rev 2003;32 (5):264–7. 链接1

[15] Matsuo T. Some new aspects of adiabatic calorimetry at low temperatures. Thermochim Acta 1990;163:57–70. 链接1

[16] Bartolome J, Bartolome F. Specific heat below 1 K. Some examples in magnetism. Phase Transit 1997;64(1–2):57–86. 链接1

[17] Matsumoto Y, Nakatsuji S. Relaxation calorimetry at very low temperatures for systems with internal relaxation. Rev Sci Instrum 2018;89(3):033908. 链接1

[18] Cooke DW, Michel KJ, Hellman F. Thermodynamic measurements of submilligram bulk samples using a membrane-based ‘‘calorimeter on a chip”. Rev Sci Instrum 2008;79(5):053902. 链接1

[19] Queen DR, Hellman F. Thin film nanocalorimeter for heat capacity measurements of 30 nm films. Rev Sci Instrum 2009;80(6):063901. 链接1

[20] Navrotsky A, Dorogova M, Hellman F, Cooke DW, Zink BL, Lesher CE, et al. Application of calorimetry on a chip to high-pressure materials. Proc Natl Acad Sci USA 2007;104(22):9187–91. 链接1

[21] Dachs E, Benisek A. A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics 2011;51(8):460–4. 链接1

[22] Hohne G, Hemminger W, Flammersheim HJ. Differential scanning calorimetry: an introduction for practitioners. Berlin: Springer-Verlag; 1996. 链接1

[23] Navrotsky A, Ushakov SV. Hot matters—experimental methods for hightemperature property measurement. Am Ceram Soc Bull 2017;96:22–8. 链接1

[24] Ushakov SV, Navrotsky A. Direct measurements of fusion and phase transition enthalpies in lanthanum oxide. J Mater Res 2011;26(7):845–7. 链接1

[25] Radha AV, Ushakov SV, Navrotsky A. Thermochemistry of lanthanum zirconate pyrochlore. J Mater Res 2009;24(11):3350–7. 链接1

[26] Ushakov SV, Navrotsky A. Direct measurement of fusion enthalpy of LaAlO3 and comparison of energetics of melt, glass and amorphous thin films. J Am Ceram Soc 2014;97(5):1589–94. 链接1

[27] Ushakov SV, Navrotsky A. Experimental approaches to the thermodynamics of ceramics above 1500 C. J Am Ceram Soc 2012;95(5):1463–82. 链接1

[28] Ushakov SV, Shvarev A, Alexeev T, Kapush D, Navrotsky A. Drop-and-catch (DnC) calorimetry using aerodynamic levitation and laser heating. J Am Ceram Soc 2017;100(2):754–60. 链接1

[29] Shamblin J, Feygenson M, Neuefeind J, Tracy CL, Zhang F, Finkeldei S, et al. Probing disorder in isometric pyrochlore and related complex oxides. Nat Mater 2016;15(5):507–11. 链接1

[30] Solomon JM, Shamblin J, Lang M, Navrotsky A, Asta M. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE = Ho, Y, Gd, Nd, La). Sci Rep 2016;6(1):38772. 链接1

[31] Zietlow P, Beirau T, Mihailova B, Groat LA, Chudy T, Shelyug A, et al. Thermal annealing of natural, radiation-damaged pyrochlore. Z Kristallogr 2016;232:1–3. 链接1

[32] Finkeldei S, Kegler P, Kowalski P, Schreinemachers C, Brandt F, Bukaemskiy A, et al. Composition dependent order-disorder transition in NdxZr1-xO2–0.5x pyrochlores: a combined structural, calorimetric and ab initio modeling study. Acta Mater 2017;125:166–76. 链接1

[33] Chung CK, Shamblin J, O’Quinn E, Shelyug A, Gussev I, Lang MK, et al. Thermodynamic and structural evolution of Dy2Ti2O7 pyrochlore after swift heavy ion irradiation. Acta Mater 2018;145:227–34. 链接1

[34] Maram PS, Ushakov SV, Weber RJK, Benmore CJ, Navrotsky A. Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids—a thermodynamic perspective. Sci Rep 2018;8(1):10658. 链接1

[35] Helean KB, Ushakov SV, Brown CE, Navrotsky A, Lian J, Ewing RC, et al. Formation enthalpies of rare earth titanate pyrochlores. J Solid State Chem 2004;177(6):1858–66. 链接1

[36] Lian J, Helean KB, Kennedy BJ, Wang LM, Navrotsky A, Ewing RC. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J Phys Chem B 2006;110(5):2343–50. 链接1

[37] Ushakov SV, Navrotsky A, Tangeman JA, Helean KB. Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates. J Am Ceram Soc 2007;90(4):1171–6. 链接1

[38] Navrotsky A, Kleppa OJ. The thermodynamics of cation distributions in simple spinels. J Inorg Nucl Chem 1967;29(11):2701–14. 链接1

[39] Li Y, Kowalski PM, Beridze G, Birnie AR, Finkeldei S, Bosbach D. Defect formation energies in A2B2O7 pyrochlores. Scr Mater 2015;107:18–21. 链接1

相关研究