期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.03.005

喷射策略对低负荷下天然气——柴油双燃料预混压燃燃烧的影响研究

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

收稿日期: 2018-04-14 修回日期: 2018-11-12 录用日期: 2019-03-18 发布日期: 2019-04-26

下一篇 上一篇

摘要

双燃料预混压燃(dual-fuel premixed charge compression ignition, DF-PCCI)燃烧因其氮氧化物(NOx)和颗粒物(PM)排放低而被认为是重载压燃发动机中传统柴油燃烧的可行替代方案。当天然气(NG)应用于DF-PCCI发动机时,其低反应活性降低了高负荷下的最大压升率。然而,天然气- 柴油DF-PCCI发动机在低负荷工况运行时存在燃烧效率低的问题。为了降低低负荷工况下的燃料消耗率、未燃碳氢化合物(HC)和一氧化碳(CO)排放,本文研究了DF-PCCI发动机中供给燃料(天然气和柴油)的喷射策略。研究发现,天然气替代率和柴油喷射时刻(start of energizing, SOE)的改变有效地控制了燃料- 空气混合气的形成。采用柴油两次喷射策略可以调节混合气的局部反应活性。预喷柴油SOE 的延迟和预喷柴油喷射量的减少有利于降低燃烧损失。废气再循环(EGR)的引入通过推迟燃烧相位改善了燃料经济性并将NOx 和PM 排放降低至欧六(Euro Ⅵ)标准以下。结合40%天然气替代率,柴油两次喷射策略和中等EGR 率可以在低负荷工况下有效提高燃烧效率与指示效率,并降低HC和CO排放。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

参考文献

[ 1 ] US Energy Information Administration (EIA). Annual energy outlook with projects to 2050. Washington, DC: EIA; 2017. 链接1

[ 2 ] Yao M, Zheng Z, Liu H. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Pror Energy Combust Sci 2009;35 (5):398–437. 链接1

[ 3 ] Saxena S, Bedoya ID. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Pror Energy Combust Sci 2013;39(5):457–88. 链接1

[ 4 ] Agarwal AK, Singh AP, Maurya RK. Evolution, challenges and path forward for low temperature combustion engines. Pror Energy Combust Sci 2017;61:1–56. 链接1

[ 5 ] Liu MB, He BQ, Zhao H. Effect of air dilution and effective compression ratio on the combustion characteristics of a HCCI (homogeneous charge compression ignition) engine fuelled with n-butanol. Energy 2015;85:296–303. 链接1

[ 6 ] Paykani A, Kakaee AH, Rahnama P, Reitz RD. Progress and recent trends in reactivity-controlled compression ignition engines. Int J Engine Res 2016;17 (5):481–524. 链接1

[ 7 ] Inagaki K, Fuyuto T, Nishikawa K, Nakakita K, Sakata I. Dual-fuel PCI combustion controlled by in-cylinder stratification of ignitability. SAE technical paper. Washington, DC: SAE International; 2006. No.: 2006-01-0028. 链接1

[ 8 ] Kokjohn SL, Hanson RM, Splitter DA, Reitz RD. Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending. SAE Int J Engines 2009;2:24–39. 链接1

[ 9 ] Benajes J, Molina S, García A, Monsalve-Serrano J. Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Convers Manage 2015;99:193–209. 链接1

[10] Ma S, Zheng Z, Liu H, Zhang Q, Yao M. Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Appl Energy 2013;109:202–12. 链接1

[11] Wang Y, Zhu Z, Yao M, Li T, Zhang W, Zheng Z. An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds. Energy Convers Manage 2016;124:399–413. 链接1

[12] Wang Y, Yao M, Li T, Zhang W, Zheng Z. A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads. Appl Energy 2016;175:389–402. 链接1

[13] Benajes J, Pastor JV, García A, Monsalve-Serrano J. The potential of RCCI concept to meet Euro VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel 2015;159: 952–61. 链接1

[14] Kokjohn SL, Hanson RM, Splitter DA, Reitz RD. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Engine Res 2011;12(3):209–26. 链接1

[15] Splitter D, Hanson R, Kokjohn S, Wissink M, Reitz RD. Injection effects in low load RCCI dual-fuel combustion. SAE technical paper. Washington, DC: SAE International; 2011. No.: 2011-24-0047. 链接1

[16] Molina S, García A, Pastor JM, Belarte E, Balloul I. Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Appl Energy 2015;143:211–27. 链接1

[17] Hanson R, Ickes A, Wallner T. Comparison of RCCI operation with and without EGR over the full operating map of a heavy-duty diesel engine. SAE technical paper. Washington, DC: SAE International; 2016. No.: 2016-01-0794. 链接1

[18] Tong L, Wang H, Zheng Z, Reitz R, Yao M. Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 2016;181:878–86. 链接1

[19] Jia Z, Denbratt I. Experimental investigation of natural gas-diesel dual-fuel RCCI in a heavy-duty engine. SAE Int J Engines 2015;8:797–807. 链接1

[20] Dahodwala M, Joshi S, Koehler EW, Franke M. Investigation of diesel and CNG combustion in a dual fuel regime and as an enabler to achieve RCCI combustion. SAE technical paper. Washington, DC: SAE International; 2014. No.: 2014-01-1308. 链接1

[21] Walker NR, Wissink ML, DelVescovo DA, Reitz RD. Natural gas for high load dual-fuel reactivity controlled compression ignition in heavy-duty engines. J Energy Resour Technol 2015;137(4):042202. 链接1

[22] Dahodwala M, Joshi S, Koehler E, Franke M, Tomazic D. Experimental and computational analysis of diesel-natural gas RCCI combustion in heavy-duty engines. SAE technical paper. Washington, DC: SAE International; 2015. No.: 2015-01-0849. 链接1

[23] Nieman DE, Dempsey AB, Reitz RD. Heavy-duty RCCI operation using natural gas and diesel. SAE Int J Engines 2012;5:270–85. 链接1

[24] Doosje E, Willems F, Baert R. Experimental demonstration of RCCI in heavyduty engines using diesel and natural gas. SAE technical paper. Washington, DC: SAE International; 2014. No.: 2014-01-1318. 链接1

[25] Poorghasemi K, Saray RK, Ansari E, Irdmousa BK, Shahbakhti M, Naber JD. Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine. Appl Energy 2017;199:430–46. 链接1

[26] Ansari E, Shahbakhti M, Naber J. Optimization of performance and operational cost for a dual mode diesel-natural gas RCCI and diesel combustion engine. Appl Energy 2018;231:549–61. 链接1

[27] Wei L, Geng P. A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Process Technol 2016;142:264–78. 链接1

[28] Park H, Shim E, Bae C. Improvement of combustion and emissions with exhaust gas recirculation in a natural gas-diesel dual-fuel premixed charge compression ignition engine at low load operations. Fuel 2019;235:763–74. 链接1

[29] Heywood JB. Internal combustion engine fundamentals. New York: Mcgrawhill; 1988. 链接1

[30] Khatamnejad H, Khalilarya S, Jafarmadar S, Mirsalim M, Dahodwala M. Influence of blend ratio and injection parameters on combustion and emissions characteristics of natural gas-diesel RCCI engine. SAE technical paper. Washington, DC: SAE International; 2017. No.: 2017-24-0083. 链接1

[31] Al-Qurashi K, Lueking AD, Boehman AL. The deconvolution of the thermal, dilution, and chemical effects of exhaust gas recirculation (EGR) on the reactivity of engine and flame soot. Combust Flame 2011;158(9):1696–704. 链接1

[32] Fathi M, Saray RK, Checkel MD. The influence of exhaust gas recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled homogeneous charge compression ignition (HCCI) engines. Appl Energy 2011;88(12):4719–24. 链接1

[33] Park H, Kim J, Bae C. Effects of hydrogen ratio and EGR on combustion and emissions in a hydrogen/diesel dual-fuel PCCI engine. SAE technical paper. Washington, DC: SAE International; 2015. No.: 2015-01-1815. 链接1

相关研究