期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.03.007

金属稳定同位素示踪深部碳循环——机遇与挑战

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

收稿日期: 2017-06-29 修回日期: 2019-01-25 录用日期: 2019-03-06 发布日期: 2019-06-14

下一篇 上一篇

摘要

在整个地质历史时期,海相碳酸盐岩和碳酸盐化洋壳俯冲到地球深部并通过火山作用将再循环碳排放至地表的过程对地球大气圈、生物圈和气候变化有着重大影响。识别地幔中再循环的碳酸盐岩并估计其通量对理解全球深部碳循环(deep carbon cycle, DCC)具有至关重要的意义。本文总结了近年来使用二价金属稳定同位素(如钙、镁、锌)示踪深部碳循环的研究进展。这三个同位素体系在海相碳酸盐岩和地幔之间存在明显同位素差异,使其成为深部碳循环的新兴示踪计。最新的研究已经观察到全球多个地区的玄武岩中存在钙、镁、锌同位素异常,揭示了再循环碳酸盐岩能够进入地幔甚至地幔过渡带(410~660 km)。然而,该解释仍存在诸多问题,因为其他地质过程也可能产生与沉积碳酸盐加入源区相似的同位素分馏效应,包括部分熔融过程、碳酸盐化榴辉岩的再循环、金属和碳的分离,以及同位素扩散效应等。在讨论幔源岩石的金属同位素异常时,如何排除以上影响因素对应用这些同位素示踪深部碳循环至关重要。本文详细评估和讨论了这些过程对金属同位素示踪深部碳循环的影响,并总结了排除这些干扰的可能解决方案。综合考虑以上因素,我们论证了中国东部新生代玄武岩镁、锌同位素异常是由富镁、锌的沉积碳酸盐岩再循环进入地幔源区导致的。

图片

图1

图2

图3

参考文献

[ 1 ] Dasgupta R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 2013;75:183–229. 链接1

[ 2 ] Javoy M, Pineau F, Allègre CJ. Carbon geodynamic cycle. Nature 1982;300 (5888):171. 链接1

[ 3 ] Dasgupta R, Hirschmann MM. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 2010;298:1–13. 链接1

[ 4 ] Hazen RM, Schiffries CM. Why deep carbon? Rev Mineral Geochem 2013;75:1–6. 链接1

[ 5 ] Duncan MS, Dasgupta R. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat Geosci 2017;10:387–92. 链接1

[ 6 ] Deines P. The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 2002;58(3–4):247–78. 链接1

[ 7 ] Huang S, Farkaš J, Jacobsen SB. Stable calcium isotope compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta 2011;75(17):4987–97. 链接1

[ 8 ] Yang W, Teng FZ, Zhang HF, Li SG. Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chem Geol 2012;328:185–94. 链接1

[ 9 ] Huang J, Li SG, Xiao Y, Ke S, Li WY, Tian Y. Origin of low d26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochim Cosmochim Acta 2015;164:298–317. 链接1

[10] Liu SA, Wang ZZ, Li SG, Huang J, Yang W. Zinc isotope evidence for a largescale carbonated mantle beneath Eastern China. Earth Planet Sci Lett 2016;444:169–78. 链接1

[11] Tian HC, Yang W, Li SG, Ke S, Chu ZY. Origin of low d26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta 2016;188:93–105. 链接1

[12] Li SG, Yang W, Ke S, Meng X, Tian H, Xu L, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in Eastern China. Natl Sci Rev 2017;4(1):111–20. 链接1

[13] Hofmann AW. A store of subducted carbon beneath Eastern China. Natl Sci Rev 2017;4(1):2. 链接1

[14] Su BX, Hu Y, Teng FZ, Xiao Y, Zhou XH, Sun Y, et al. Magnesium isotope constraints on subduction contribution to Mesozoic and Cenozoic East Asian continental basalts. Chem Geol 2017;466:116–22. 链接1

[15] Wang XJ, Chen LH, Hofmann AW, Mao FG, Liu JQ, Zhong Y, et al. Mantle transition zone-derived EM1 component beneath NE China: geochemical evidence from Cenozoic potassic basalts. Earth Planet Sci Lett 2017;465:16–28. 链接1

[16] Liu D, Zhao Z, Zhu DC, Niu Y, Widom E, Teng FZ, et al. Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. Earth Planet Sci Lett 2015;430:458–69. 链接1

[17] Ke S, Teng FZ, Li SG, Gao T, Liu SA, He Y, et al. Mg, Sr, and O isotope geochemistry of syenites from northwest Xinjiang, China: tracing carbonate recycling during Tethyan oceanic subduction. Chem Geol 2016;437:109–19. 链接1

[18] Liu F, Li X, Wang G, Liu Y, Zhu H, Kang J, et al. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: evidence from magnesium and calcium isotopes. J Geophys Res Solid Earth 2017;122:9729–44. 链接1

[19] Tian HC, Yang W, Li SG, Ke S. Could sedimentary carbonates be recycled into the lower mantle? Constraints from Mg isotopic composition of Emeishan basalts. Lithos 2017;292–293:250–61. 链接1

[20] Cheng Z, Zhang Z, Hou T, Santosh M, Chen L, Ke S, et al. Decoupling of Mg–C and Sr–Nd–O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim Cosmochim Acta 2017;202:159–78. 链接1

[21] Cheng Z, Zhang Z, Xie Q, Hou T, Ke S. Subducted slab-plume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province. Earth Planet Sci Lett 2018;489:100–10. 链接1

[22] Wang SJ, Teng FZ, Scott JM. Tracing the origin of continental HIMU-like intraplate volcanism using magnesium isotope systematics. Geochim Cosmochim Acta 2016;185:78–87. 链接1

[23] Hoang THA, Choi SH, Yu Y, Pham TH, Nguyen KH, Ryu JS. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos 2018;296:382–95. 链接1

[24] Biscaye PE, Kolla V, Turekian KK. Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J Geophys Res 1976;81:2595–603. 链接1

[25] Brecˇevic´ L, Nöthig-Laslo V, Kralj D, Popovic´ S. Effect of divalent cations on the formation and structure of calcium carbonate polymorphs. J Chem Soc, Faraday Trans 1996;92:1017–22. 链接1

[26] McDonough WF, Sun SS. The composition of the Earth. Chem Geol 1995;120 (3–4):223–53. 链接1

[27] Reeder RJ, Lamble GM, Northrup PA. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. Am Mineral 1999;84(7–8):1049–60. 链接1

[28] Turekian KK, Wedepohl KH. Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 1961;72(2):175–92. 链接1

[29] Salters VJM, Stracke A. Composition of the depleted mantle. Geochem Geophys Geosyst 2004;5:5. 链接1

[30] Li JL, Klemd R, Gao J, Meyer M. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): evidence for prograde metamorphism during subduction of oceanic crust. Am Mineral 2014;99 (1):206–17. 链接1

[31] Teng FZ, Li WY, Ke S, Marty B, Dauphas N, Huang S, et al. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 2010;74 (14):4150–66. 链接1

[32] Fantle MS, Tipper ET. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth Sci Rev 2014;129:148–77. 链接1

[33] Pichat S, Douchet C, Albarède F. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sci Lett 2003;210:167–78. 链接1

[34] Liu SA, Wu H, Shen SZ, Jiang G, Zhang S, Lv Y, et al. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology 2017;45:343–6. 链接1

[35] Wang ZZ, Liu SA, Liu J, Huang J, Xiao Y, Chu ZY, et al. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochim Cosmochim Acta 2017;198:151–67. 链接1

[36] Chen C, Liu Y, Feng L, Foley SF, Zhou L, Ducea MN, et al. Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochim Cosmochim Acta 2018;238:55–67. 链接1

[37] Ionov DA, Qi YH, Kang JT, Golovin AV, Oleinikov OB, Zheng W, et al. Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochim Cosmochim Acta 2019;248(1):1–13. 链接1

[38] Kang JT, Ionov DA, Liu F, Zhang CL, Golovin AV, Qin LP, et al. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth Planet Sci Lett 2017;474:128–37. 链接1

[39] Huang S, Farkaš J, Jacobsen SB. Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett 2010;292(3–4):337–44. 链接1

[40] Kang JT, Zhu HL, Liu YF, Liu F, Wu F, Hao YT, et al. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China. Geochim Cosmochim Acta 2016;174:335–44. 链接1

[41] Amini M, Eisenhauer A, Böhm F, Holmden C, Kreissig K, Hauff F, et al. Calcium isotopes (d44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: evidence for Ca isotope fractionation in terrestrial silicates. Geostand Geoanal Res 2009;33(2):231–47. 链接1

[42] Doucet LS, Mattielli N, Ionov DA, Debouge W, Golovin AV. Zn isotopic heterogeneity in the mantle: a melting control? Earth Planet Sci Lett 2016;451:232–40. 链接1

[43] Sossi PA, Nebel O, O’Neill HSC, Moynier F. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem Geol 2018;477:73–84. 链接1

[44] Wang SJ, Teng FZ, Li SG. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun 2014;5:5328. 链接1

[45] Pokrovsky BG, Mavromatis V, Pokrovsky OS. Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: a new tool for tracing the change in weathering regime? Chem Geol 2011;290 (1):67–74. 链接1

[46] Geske A, Zorlu J, Richter D, Buhl D, Niedermayr A, Immenhauser A. Impact of diagenesis and low grade metamorphosis on isotope (d26Mg, d13C, d18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem Geol 2012;332:45–64. 链接1

[47] Riechelmann S, Buhl D, Schröder-Ritzrau A, Riechelmann D, Richter D, Vonhof H, et al. The magnesium isotope record of cave carbonate archives. Clim Past 2012;8(6):1849–67. 链接1

[48] Higgins JA, Schrag DP. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth Planet Sci Lett 2012;357:386–96. 链接1

[49] Higgins JA, Schrag DP. The Mg isotopic composition of Cenozoic seawater– evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci Lett 2015;416:73–81. 链接1

[50] Blättler CL, Miller NR, Higgins JA. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth Planet Sci Lett 2015;419:32–42. 链接1

[51] Yang W, Teng FZ, Zhang HF. Chondritic magnesium isotopic composition of the terrestrial mantle: a case study of peridotite xenoliths from the North China Craton. Earth Planet Sci Lett 2009;288(3):475–82. 链接1

[52] Bourdon B, Tipper ET, Fitoussi C, Stracke A. Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta 2010;74(17):5069–83. 链接1

[53] von Strandmann PAP, Elliott T, Marschall HR, Coath C, Lai YJ, Jeffcoate AB, et al. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 2011;75:5247–68. 链接1

[54] Huang F, Zhang Z, Lundstrom CC, Zhi X. Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim Cosmochim Acta 2011;75:3318–34. 链接1

[55] Liu SA, Teng FZ, Yang W, Wu F. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton. Earth Planet Sci Lett 2011;308(1):131–40. 链接1

[56] Xiao Y, Teng FZ, Zhang HF, Yang W. Large magnesium isotope fractionation in peridotite xenoliths from eastern North China Craton: product of melt–rock interaction. Geochim Cosmochim Acta 2013;115:241–61. 链接1

[57] An Y, Huang JX, Griffin W, Liu C, Huang F. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian Cratons. Geochim Cosmochim Acta 2017;200:167–85. 链接1

[58] Huang J, Chen S, Zhang XC, Huang F. Effects of melt percolation on Zn isotope heterogeneity in the mantle: constraints from peridotite massifs in Ivrea-Verbano Zone, Italian Alps. J Geophys Res Solid Earth 2018;123 (4):2706–22. 链接1

[59] Hulett SRW, Simonetti A, Rasbury ET, Hemming NG. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nat Geosci 2016;9:904–8. 链接1

[60] Fantle MS, DePaolo DJ. Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett 2005;237(1):102–17. 链接1

[61] Higgins JA, Schrag DP. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta 2010;74 (17):5039–53. 链接1

[62] Le Roux V, Lee CA, Turner SJ. Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim Cosmochim Acta 2010;74(9):2779–96. 链接1

[63] Wang SJ, Teng FZ, Li SG, Hong JA. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta 2014;143:34–48. 链接1

[64] Liu SA, Teng FZ, He YS, Ke S, Li SG. Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust. Earth Planet Sci Lett 2010;297:646–54. 链接1

[65] Teng FZ, Li WY, Rudnick RL, Gardner LR. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet Sci Lett 2010;300(1):63–71. 链接1

[66] Pons ML, Debret B, Bouilhol P, Delacour A, Williams H. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nat Commun 2016;7:13794. 链接1

[67] Inglis EC, Debret B, Burton KW, Millet MA, Pons ML, Dale CW, et al. The behaviour of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from Western Alpine Ophiolites. Geochem Geophys Geosyst 2017;18(7):2562–79. 链接1

[68] Little SH, Vance D, McManus J, Severmann S. Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes. Geology 2016;44:207–10. 链接1

[69] Chen H, Savage PS, Teng FZ, Helz RT, Moynier F. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth Planet Sci Lett 2013;369:34–42. 链接1

[70] Sun Y, Teng F, Ying JF, Su BX, Hu Y, Fan QC, et al. Magnesium isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic rocks. J Geophys Res Solid Earth 2017;122(10):7562–72. 链接1

[71] Kim JI, Choi SH, Koh GW, Park JB, Ryu JS. Petrogenesis and mantle source characteristics of volcanic rocks on Jeju Island, South Korea. Lithos 2019;326– 327:476–90. 链接1

[72] Tian HC, Yang W, Li SG, Ke S, Duan XZ. Low d26Mg volcanic rocks of Tengchong in Southwestern China: a deep carbon cycle induced by supercritical liquids. Geochim Cosmochim Acta 2018;240:191–219. 链接1

[73] Wang ZZ, Liu SA, Chen LH, Li SG, Zeng G. Compositional transition in natural alkaline lavas through silica-undersaturated melt–lithosphere interaction. Geology 2018;46(9):771–4. 链接1

[74] Wang XJ, Chen LH, Hofmann AW, Hanyu T, Kawabata H, Zhong Y, et al. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc Natl Acad Sci USA 2018;115(35):8682–7. 链接1

[75] Debret B, Bouilhol P, Pons ML, Williams H. Carbonate transfer during the onset of slab devolatilization: new insights from Fe and Zn stable isotopes. J Petrol 2018;59(6):1145–66. 链接1

[76] Shen J, Li SG, Wang SJ, Teng FZ, Li QL, Liu YS. Subducted Mg-rich carbonates into the deep mantle wedge. Earth Planet Sci Lett 2018;503:118–30. 链接1

[77] Zhao X, Zhang Z, Huang S, Liu Y, Li X, Zhang H. Coupled extremely light Ca and Fe isotopes in peridotites. Geochim Cosmochim Acta 2017;208:368–80. 链接1

[78] Schiller M, Paton C, Bizzarro M. Calcium isotope measurement by combined HR-MC-ICPMS and TIMS. J Anal At Spectrom 2012;27:38–49. 链接1

[79] Zhao D, Yu S, Ohtani E. East Asia: seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci 2011;40(3):689–709. 链接1

[80] Green DH. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and waterundersaturated conditions. Earth Planet Sci Lett 1973;19(1):37–53. 链接1

[81] Jaques AL, Green DH. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 1980;73 (3):287–310. 链接1

[82] Teng FZ. Magnesium isotope geochemistry. Rev Mineral Geochem 2017;82 (1):219–87. 链接1

[83] Handler MR, Baker JA, Schiller M, Bennett VC, Yaxley GM. Magnesium stable isotope composition of Earth’s upper mantle. Earth Planet Sci Lett 2009;282 (1–4):306–13. 链接1

[84] Dauphas N, Teng FZ, Arndt NT. Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine. Geochim Cosmochim Acta 2010;74(11):3274–91. 链接1

[85] Zhong Y, Chen LH, Wang XJ, Zhang GL, Xie LW, Zeng G. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth Planet Sci Lett 2017;463:127–35. 链接1

[86] Zhang J, Liu Y, Ling W, Gao S. Pressure-dependent compatibility of iron in garnet: insights into the origin of ferropicritic melt. Geochim Cosmochim Acta 2017;197:356–77. 链接1

[87] Huang J, Zhang XC, Chen S, Tang L, Wörner G, Yu H, et al. Zinc isotopic systematics of Kamchatka–Aleutian arc magmas controlled by mantle melting. Geochim Cosmochim Acta 2018;238:85–101. 链接1

[88] Caroff M, Maury RC, Guille G, Cotten J. Partial melting below Tubuai (Austral Islands, French Polynesia). Contrib Mineral Petrol 1997;127:369–82. 链接1

[89] Dasgupta R, Hirschmann MM. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 2006;440(7084):659–62. 链接1

[90] Li SG, Wang Y. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China Craton—geodynamic effects of deep recycled Carbon. Sci China Earth Sci 2018;61:853–68. 链接1

[91] Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, et al. The amount of recycled crust in sources of mantle-derived melts. Science 2007;316:412–7. 链接1

[92] Liu JQ, Ren ZY, Nichols ARL, Song MS, Qian SP, Zhang Y, et al. Petrogenesis of Late Cenozoic basalts from north Hainan Island: constraints from melt inclusions and their host olivines. Geochim Cosmochim Acta 2015;152:89–121. 链接1

[93] Pan D, Spanu L, Harrison B, Sverjensky DA, Galli G. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA 2013;110(17):6646–50. 链接1

[94] Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci 2011;4:703–6. 链接1

[95] Kushiro I, Satake H, Akimoto S. Carbonate-silicate reactions at high pressures and possible presence of dolomite and magnesite in upper mantle. Earth Planet Sci Lett 1975;28:116–20. 链接1

[96] Boulard E, Pan D, Galli G, Liu Z, Mao WL. Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun 2015;6:6311. 链接1

[97] Longpré MA, Stix J, Klügel A, Shimizu N. Mantle to surface degassing of carbon-and sulphur-rich alkaline magma at El Hierro. Canary Islands. Earth Planet Sci Lett 2017;460:268–80. 链接1

[98] Boudoire G, Rizzo AL, Di Muro A, Grassa F, Liuzzo M. Extensive CO2 degassing in the upper mantle beneath oceanic basaltic volcanoes: first insights from Piton de la Fournaise volcano (La Réunion Island). Geochim Cosmochim Acta 2018;235:376–401. 链接1

[99] Aubaud C, Pineau F, Hékinian R, Javoy M. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet Sci Lett 2005;235:511–27. 链接1

[100] Barry PH, Hilton DR, Füri E, Halldórsson SA, Grönvold K. Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochim Cosmochim Acta 2014;134:74–99. 链接1

[101] Richter FM, Watson EB, Mendybaev RA, Teng FZ, Janney PE. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim Cosmochim Acta 2008;72(1):206–20. 链接1

[102] Dominguez G, Wilkins G, Thiemens MH. The Soret effect and isotopic fractionation in high-temperature silicate melts. Nature 2011;473:70. 链接1

[103] Huang F, Chakraborty P, Lundstrom CC, Holmden C, Glessner JJG, Kieffer SW, et al. Isotope fractionation in silicate melts by thermal diffusion. Nature 2010;464:396–400. 链接1

[104] Teng FZ, Dauphas N, Helz RT, Gao S, Huang S. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 2011;308(3–4):317–24. 链接1

[105] Sio CKI, Dauphas N, Teng FZ, Chaussidon M, Helz R, Roskosz M. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses. Geochim Cosmochim Acta 2013;123:302–21. 链接1

[106] Lai YJ, von Strandmann PAP, Dohmen R, Takazawa E, Elliott T. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim Cosmochim Acta 2015;164:318–32. 链接1

相关研究