期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第3期 doi: 10.1016/j.eng.2019.03.008

一种高效的二冲程发动机概念——结合空气混合动力系统的增压 直流扫气式直喷汽油(BUSDIG)发动机

Centre for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UK

收稿日期: 2018-07-22 修回日期: 2019-01-02 录用日期: 2019-03-18 发布日期: 2019-05-07

下一篇 上一篇

摘要

本研究提出并设计了一种新颖的二冲程增压直流扫气式直喷汽油(BUSDIG)发动机,以实现发动机小型化和低速化,进而提升发动机的性能和效率。本文综述了BUSDIG 发动机的设计和开发过程,并总结了主要的研究成果。为了最大限度地提高发动机的扫气性能,并实现合理的缸内流动以促进燃油/ 空气的混合过程,本研究采用三维(3D)计算流体动力学(CFD)模拟手段系统分析了发动机缸径/ 冲程比(B/S)、扫气道角度和进气道的设计。此外,本研究还系统分析了扫气口和排气门开启型线对扫气过程的影响。为实现最佳的缸内燃油分层,采用经过实验标定的Reize-Diwakar模型开展了缸内喷雾的CFD 模拟,系统分析了不同喷油策略对缸内混合气形成过程的影响。基于优化后的BUSDIG 发动机设计方案,在Ricardo WAVE 软件中构建了对应的一维(1D)发动机计算模型。计算结果表明,采用稀薄燃烧和喷水策略,二冲程BUSDIG发动机的最高有效热效率可达47.2%。在化学计量燃空当量比条件下,BUSDIG 发动机在1600 r∙min–1 的转速下可实现379 N∙m 的扭矩,在4000 r∙min–1 的转速下可达到112 kW∙L–1 的功率密度。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

图24

图25

图26

图27

参考文献

[ 1 ] Fraser N, Blaxill H, Lumsden G, Bassett M. Challenges for increased efficiency through gasoline engine downsizing. SAE Int J Engines 2009;2(1):991–1008. 链接1

[ 2 ] Dingle S, Cairns A, Zhao H, Williams J, Williams O, Ali R. Lubricant induced preignition in an optical SI engine. SAE Technical Paper 2014:2014-01-1222. 链接1

[ 3 ] Benajes J, Novella R, De Lima D, Tribotte P. Investigation on multiple injection strategies for gasoline PPC operation in a newly designed 2-stroke HSDI compression ignition engine. SAE Int J Engines 2015;8(2):758–74. 链接1

[ 4 ] Dalla Nora M, Lanzanova T, Zhang Y, Zhao H. Engine downsizing through twostroke operation in a four-valve GDI engine. SAE Technical Paper 2016:2016- 01-0674. 链接1

[ 5 ] Mattarelli E, Rinaldini CA. Two-stroke gasoline engines for small-medium passenger cars. SAE Technical Paper 2015:2015-01-1284. 链接1

[ 6 ] Zhang Y, Nora MD, Zhao H. Comparison of performance, efficiency and emissions between gasoline and E85 in a two-stroke poppet valve engine with lean boost CAI operation. SAE Technical Paper 2015:2015-01-0827. 链接1

[ 7 ] Nishida K, Sakuyama H, Kimijima T. Improvement of fuel economy using a new concept of two-stroke gasoline engine applying stratified-charge auto-ignition. SAE Technical Paper 2009:2009-28-0009. 链接1

[ 8 ] Johnson J, Den Braven KR. Comparison of homogeneous, stratified and highsquish stratified combustion in a direct-injected two-stroke engine. SAE Technical Paper 2008:2008-32-0030. 链接1

[ 9 ] Wang X, Zhao H, Xie H. Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine. Appl Energy 2016;165:801–14. 链接1

[10] Wang X, Zhao H, Xie H. Effect of piston shapes and fuel injection strategies on stoichiometric stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine by numerical simulations. Energy Convers Manage 2015;98:387–400. 链接1

[11] Wang X, Ma J, Zhao H. Analysis of the effect of bore/stroke ratio and scavenge port angles on the scavenging process in a two-stroke boosted uniflow scavenged direct injection gasoline engine. Proc Inst Mech Eng, D J Automob Eng 2018;232(13):1799–814. 链接1

[12] Wang X, Ma J, Zhao H. Evaluations of scavenge port designs for a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine by 3D CFD Simulations. SAE Technical Paper 2016:2016-01-1049. 链接1

[13] Wang X, Ma J, Zhao H. Analysis of scavenge port designs and exhaust valve profiles on the in-cylinder flow and scavenging performance in a two-stroke boosted uniflow scavenged direct injection gasoline engine. Int J Engine Res 2018;19(5):509–27. 链接1

[14] Ma J, Zhao H. The modeling and design of a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine. SAE Technical Paper 2015:2015-01-1970. 链接1

[15] Wang X, Ma J, Zhao H. Analysis of the impact of exhaust valve profile on the scavenging and combustion process in a two-stroke boosted uniflow scavenged gasoline (BUSDIG) engine. In: Proceedings of the IMechE Internal Combustion Engines Conference 2017 Dec 6–7; Birmingham, UK; 2017.

[16] Wang X, Ma J, Zhao H. Analysis of the effect of intake plenum design on the scavenging process in a two-stroke boosted uniflow scavenged direct injection gasoline (BUSDIG) engine. SAE Technical Paper 2017:2017-01-1031. 链接1

[17] Wang X, Zhao H. Numerical simulation of the gasoline spray with an outwardopening piezoelectric injector: a comparative study of different breakup models. SAE Technical Paper 2018:2018-01-0272. 链接1

[18] Wang X, Ma J, Zhao H. Analysis of mixture formation process in a two-stroke boosted uniflow scavenged direct injection gasoline engine. Int J Engine Res 2018;19(9):927–40. 链接1

[19] Sigurdsson E, Ingvorsen KM, Jensen MV, Mayer S, Matlok S, Walther JH. Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines. Appl Energy 2014;123:37–46. 链接1

[20] Andersen FH, Mayer S. CFD analysis of the scavenging process in marine twostroke diesel engines. In: Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference; 2014: Oct 19–22; Columbus, IN, USA; 2014.

[21] Mattarelli E, Rinaldini CA, Baldini P. Modeling and Experimental Investigation of a 2-stroke GDI engine for range extender applications. SAE Technical Paper 2014:2014-01-1672. 链接1

[22] Hori H. Scavenging flow optimization of two-stroke diesel engine by use of CFD. SAE Technical Paper 2000:2000-01-0903. 链接1

[23] Laget O, Ternel C, Thiriot J, Charmasson S, Tribotté P, Vidal F. Preliminary design of a two-stroke uniflow diesel engine for passenger car. SAE Int J Engines 2013;6(1):596–613. 链接1

[24] Lee C, Zhao H, Ma T. A simple and efficient mild air hybrid engine concept and its performance analysis. Proc Inst Mech Eng, D J Automob Eng 2013;227 (1):120–36. 链接1

[25] Borghi M, Mattarelli E, Muscoloni J, Rinaldini CA, Savioli T, Zardin B. Design and experimental development of a compact and efficient range extender engine. Appl Energy 2017;202:507–26. 链接1

[26] Turner J, Blundell DW, Pearson RJ, Patel R, Larkman DB, Burke P, et al. Project omnivore: a variable compression ratio atac 2-stroke engine for ultra-widerange HCCI operation on a variety of fuels. SAE Int J Engines 2010;3(1):938–55. 链接1

[27] Blundell DW, Turner J, Pearson R, Patel R, Young J. The omnivore wide-range auto-ignition engine: results to date using 98RON unleaded gasoline and E85 fuels. SAE Technical Paper 2010:2010-01-0846. 链接1

[28] CD-adapco. Methodology, STAR-CD version 4.14. Melville: CD-adapco; 2010.

[29] Han Z, Reitz RD. Turbulence modeling of internal combustion engines using RNG j-e Models. Combust Sci Technol 1995;106(4–6):267–95. 链接1

[30] Jones WP. Prediction methods for turbulent flames. In: Kollmann W, Kollmann W, editors. Prediction methods for turbulent flow. Washington: Hemisphere; 1980. p. 1–45. 链接1

[31] Angelberger C, Poinsot T, Delhay B. Improving near-wall combustion and wall heat transfer modeling in SI engine computations. SAE Technical Paper 1997:972881. 链接1

[32] Lefebvre A. Atomization and sprays. Cleveland: CRC Press; 1988. 链接1

[33] Reitz RD, Diwakar R. Effect of drop breakup on fuel sprays. SAE Technical Paper 1986:860469. 链接1

[34] Bai C, Gosman AD. Development of methodology for spray impingement simulation. SAE Technical Paper 1995:950283. 链接1

[35] Issa RI. Solution of the implicit discretised fluid flow equations by operatorsplitting. J Comput Phys 1986;62(1):40–65. 链接1

[36] Douaud AM, Eyzat P. Four-octane-number method for predicting the antiknock behavior of fuels and engines. SAE Technical Paper 1978:780080. 链接1

[37] Chen SK, Flynn PF. Development of a single cylinder compression ignition research engine. SAE Technical Paper 1965:650733. 链接1

[38] Ma J. Numerical and experimental study of a boosted uniflow 2-stroke engine [dissertation]. London: Brunel University London; 2014. 链接1

[39] Williams AM, Baker AT, Garner CP, Vijayakumar R. Turbo-discharging turbocharged internal combustion engines. Proc Inst Mech Eng, D J Automob Eng 2013;227(1):52–65. 链接1

[40] Regner G, Herold RE, Wahl MH, Dion E,Redon F, Johnson D. The achates power opposed-piston two-stroke engine: performance and emissions results in a medium-duty application. SAE technical paper 2011:2011-01-2221.

[41] Zhang Y, Zhao H. Measurement of short-circuiting and its effect on the controlled autoignition or homogeneous charge compression ignition combustion in a two-stroke poppet valve engine. Proc Inst Mech Eng, D J Automob Eng 2012;226(8):1110–8. 链接1

[42] Hult J, Matlok S, Mayer S. Particle image velocimetry measurements of swirl and scavenging in a large marine two-stroke diesel engine. SAE Technical Paper 2014:2014-01-1173. 链接1

[43] Ingvorsen KM, Meyer KE, Walther JH, Mayer S. Turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine. Exp Fluids 2014;55 (6):1748. 链接1

[44] Han Z, Fan L, Reitz RD. Multidimensional modeling of spray atomization and air-fuel mixing in a direct-injection spark-ignition engine. SAE Technical Paper 1997:970884. 链接1

[45] Ruhland H, Lorenz T, Dunstheimer J, Breuer A, Khosravi M. A study on charge motion requirements for a class-leading GTDI engine. SAE Technical Paper 2017:2017-24-0065. 链接1

[46] Miles PC, Andersson Ö. A review of design considerations for light-duty diesel combustion systems. Int J Engine Res 2016;17(1):6–15. 链接1

[47] Altin I, Sezer I, Bilgin A. Effects of the stroke/bore ratio on the performance parameters of a dual-spark-ignition (DSI) engine. Energy Fuels 2009;23 (4):1825–31. 链接1

[48] Lee C, Goel S, Babajimopoulos A. The effects of stroke-to-bore ratio on HCCI combustion. SAE Technical Paper 2010:2010-01-0842. 链接1

[49] Yang X, Okajima A, Takamoto Y, Obokata T. Numerical study of scavenging flow in poppet-valved two-stroke engines. SAE Technical Paper 1999:1999-01- 1250. 链接1

[50] Thornhill D, Douglas R, Kenny R, Fitzsimons B. An experimental investigation into the effect of bore/stroke ratio on a simple two-stroke cycle engine. SAE Technical Paper 1999:1999-01-3342. 链接1

[51] Kee RJ, Blair GP, Douglas R. Comparison of performance characteristics of loop and cross scavenged two-stroke engines. SAE Technical Paper 1990:901666. 链接1

[52] Zhu Y, Savonen C, Johnson NL, Amsden AA. Three-dimensional computations of the scavenging process in an opposed-piston engine. SAE Technical Paper 1994:941899. 链接1

[53] Wang X, Xie H, Zhao H. Computational study of the influence of in-cylinder flow on spark ignition–controlled auto-ignition hybrid combustion in a gasoline engine. Int J Engine Res 2015;16(6):795–809. 链接1

[54] Ingvorsen KM, Meyer KE, Walther JH, Mayer S. Phase-locked stereoscopic PIV measurements of the turbulent swirling flow in a dynamic model of a uniflowscavenged two-stroke engine cylinder. In: Proceedings of the 10th International Symposium On Particle Image Velocimetry; 2013 Jul 1–3; Delft, The Netherlands; 2013.

[55] Haider S, Schnipper T, Obeidat A, Meyer KE, Okulov VL, Mayer S, et al. PIV study of the effect of piston position on the in-cylinder swirling flow during the scavenging process in large two-stroke marine diesel engines. J Mar Sci Technol 2013;18(1):133–43. 链接1

[56] Tamamidis P. Assanis DN. Optimization of inlet port design in a uniflowscavenged engine using a 3-D turbulent flow code. SAE Technical Paper 1993:931181. 链接1

[57] Abis A, Winkler F, Schwab C, Kirchberger R, Eichlseder H. An innovative twostroke twin-cylinder engine layout for range extending application. SAE Technical Paper 2013:2013-32-9133. 链接1

[58] Vashishtha A, Rathinam B. Study of intake ports design for ultra low cost (ULC) gasoline engine using STAR-CD. SAE Technical Paper 2012:2012- 01-0407. 链接1

[59] Blair GP. Design and simulation of two-stroke engines. Warrendale: Society of Automotive Engineers; 1996. 链接1

[60] Zhang Y, Zhao H, Ojapah M, Cairns A. CAI combustion of gasoline and its mixture with ethanol in a 2-stroke poppet valve DI gasoline engine. Fuel 2013;109:661–8. 链接1

[61] Zhang Y. 2-stroke CAI combustion operation in a GDI engine with poppet valves. SAE Technical Paper 2012:2012-01-1118. 链接1

[62] Ravi MR, Marathe AG. Effect of port sizes and timings on the scavenging characteristics of a uniflow scavenged engine. SAE Technical Paper 1992:920782. 链接1

[63] Carlucci AP, Ficarella A, Trullo G. Performance optimization of a two-stroke supercharged diesel engine for aircraft propulsion. Energy Convers Manage 2016;122:279–89. 链接1

[64] Persson H, Sjoholm J, Kristensson E, Johansson B, Richter M, Alden M. Study of fuel stratification on spark assisted compression ignition (SACI) combustion with ethanol using high speed fuel PLIF. SAE Technical Paper 2008:2008-01- 2401. 链接1

[65] Williams B, Ewart P, Wang X, Stone R, Ma H, Walmsley H, et al. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF. Combust Flame 2010;157(10):1866–78. 链接1

[66] Middleton RJ, Martz JB, Lavoie GA, Babajimopoulos A, Assanis DN. A computational study and correlation of premixed isooctane air laminar reaction fronts diluted with EGR. Combust Flame 2012;159(10): 3146–57. 链接1

[67] Benajes J, García A, Domenech V, Durrett R. An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Appl Therm Eng 2013;52(2):468–77. 链接1

[68] Dahl D, Andersson M, Berntsson A. Denbratt I. Reducing pressure fluctuations at high loads by means of charge stratification in HCCI combustion with negative valve overlap. SAE Technical Paper 2009:2009-01-1785. 链接1

[69] Iyer CO, Han Z, Yi J. CFD modeling of a vortex induced stratification combustion (VISC) system. SAE Technical Paper 2004:2004-01-0550. 链接1

[70] Oh H, Bae C. Effects of the injection timing on spray and combustion characteristics in a spray-guided DISI engine under lean-stratified operation. Fuel 2013;107:225–35. 链接1

[71] Costa M, Sorge U, Allocca L. Increasing energy efficiency of a gasoline direct injection engine through optimal synchronization of single or double injection strategies. Energy Convers Manage 2012;60:77–86. 链接1

[72] Ikoma T, Abe S, Sonoda Y, Suzuki H. Development of V-6 3.5-liter engine adopting new direct injection system. SAE Technical Paper 2006:2006-01- 1259. 链接1

[73] Drake MC, Haworth DC. Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc Combust Inst 2007;31 (1):99–124. 链接1

相关研究