期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第5期 doi: 10.1016/j.eng.2019.03.011

血浆代谢组学结合超微弱发光表征早期2型糖尿病的中医证型

a Leiden University–European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden,
2333 BE, the Netherlands
b Analytical BioSciences, Leiden Academic Center for Drug Research (LACDR), Leiden University, Leiden, 2333 CC, the Netherlands
c Changchun University of Chinese Medicine, Changchun 130117, China
d Sino-Dutch Center for Preventive and Personalized Medicine, Tiel, 4002 AG, the Netherlands
e Meluna Research, Geldermalsen, 4191 LC, the Netherlands
f SU Biomedicine, Leiden, 2300 AM, the Netherlands
g Shenzhen Huakai Traditional Chinese Medicine and Natural Medicine Research Center, Shenzhen 518114 ,China

收稿日期: 2018-07-05 修回日期: 2018-09-30 录用日期: 2019-03-05 发布日期: 2019-06-19

下一篇 上一篇

摘要

2型糖尿病(T2DM)的患病率在全球范围内呈迅速上升趋势。因通用干预措施收效甚微,所以疾病研究的重点已经转向个性化策略,特别是疾病的早期阶段的个性化策略。中医基于系统观建立并结合了个性化策略,提高了我们对个性化诊断的认识。从系统生物学的角度,例如将代谢组学与其他系统性诊断方法(如超微弱发光)相结合,可提高对个性化诊断的理解,同时为此类个性化诊疗策略提供生化相关物质基础。在本研究中,我们研究了44名处于2型糖尿病前期的受试者的血浆代谢组学,探讨了基于以下中医亚型进行疾病早期分型的可行性:气阴两虚、气阴两虚挟痰湿、气阴两虚挟血瘀。此外,通过血浆代谢组学和超微弱发光在中医亚分型方面的关系,获得体内生化参数与体外表征参数的关联性信息,从而尝试对疾病亚型分类及判断有更深一步的阐释。结果表明,血浆代谢物的主成分分析揭示了从中医角度划分的2型糖尿病前期不同亚型之间的差异性。对于3种2型糖尿病前期亚型,相对含量较高的脂质(如胆固醇酯和甘油三酯)是鉴别其中之二的重要元素,并且可能与较高的心血管疾病风险相关。血浆代谢组学数据表明,血脂谱是超微弱发光在2型糖尿病亚型分型中收集的重要组成部分。结果表明,2型糖尿病前期的不同中医亚型之间存在代谢差异,可通过血浆代谢物分析来区分这些亚型,血浆代谢组学为系统性超微弱发光体表测量提供了生化参数相关依据。

图片

图1

图2

图3

参考文献

[ 1 ] Virally M, Blicklé JF, Girard J, Halimi S, Simon D, Guillausseau PJ. Type 2 diabetes mellitus: epidemiology, pathophysiology, unmet needs and therapeutical perspectives. Diabetes Metab 2007;33(4):231–44. 链接1

[ 2 ] Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 2006;60(3):308–14. 链接1

[ 3 ] Ahmad SI, editor. Diabetes: an old disease, a new insight. Nottingham: Springer Science & Business Media; 2013. 链接1

[ 4 ] Alba-Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, et al. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz Med Biol Res 2007;40(8):1037–44. 链接1

[ 5 ] Gonzalez-Franquesa A, Burkart AM, Isganaitis E, Patti ME. What have metabolomics approaches taught us about type 2 diabetes? Curr Diab Rep 2016;16(8):74. 链接1

[ 6 ] Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 2009;373(9682):2215–21. 链接1

[ 7 ] Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010;87(1):4–14. 链接1

[ 8 ] Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 2012;8 (4):228–36. 链接1

[ 9 ] Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States. Report. Atlanta: US Department of Health and Human Services; 2014. 链接1

[10] [0] American Diabetes Association. Economic costs of diabetes in the US in 2012. Diabetes Care 2013;36(4):1033–46. 链接1

[11] McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010;363 (24):2339–50. 链接1

[12] Harris MI, Eastman RC. Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes Metab Res Rev 2000;16(4):230–6. 链接1

[13] Jiang M, Lu C, Zhang C, Yang J, Tan Y, Lu A, et al. Syndrome differentiation in modern research of traditional Chinese medicine. J Ethnopharmacol 2012;140 (3):634–42. 链接1

[14] Guo J, Chen H, Song J, Wang J, Zhao L, Tong X. Syndrome differentiation of diabetes by the traditional Chinese medicine according to evidence-based medicine and expert consensus opinion. Evid Based Complement Alternat Med 2014;2014:492193. 链接1

[15] Zhang AH, Sun H, Qiu S, Wang XJ. Recent highlights of metabolomics in Chinese medicine syndrome research. Evid Based Complement Alternat Med 2013;2013:402159. 链接1

[16] Ramautar R, Berger R, Van der Greef J, Hankemeier T. Human metabolomics: strategies to understand biology. Curr Opin Chem Biol 2013;17(5):841–6. 链接1

[17] Wei H, Pasman W, Rubingh C, Wopereis S, Tienstra M, Schroen J, et al. Urine metabolomics combined with the personalized diagnosis guided by Chinese medicine reveals subtypes of pre-diabetes. Mol Biosyst 2012;8(5):1482–91. 链接1

[18] Wu T, Yang M, Wei HF, He SH, Wang SC, Ji G. Application of metabolomics in traditional Chinese medicine differentiation of deficiency and excess syndromes in patients with diabetes mellitus. Evid Based Complement Alternat Med 2012;2012:968083. 链接1

[19] He M, Sun M, Van Wijk E, Van Wietmarschen H, Van Wijk R, Wang Z, et al. A Chinese literature overview on ultra-weak photon emission as promising technology for studying system-based diagnostics. Complement Ther Med 2016;25:20–6. 链接1

[20] Van Wijk R, Van der Greef J, Van Wijk E. Human ultraweak photon emission and the yin yang concept of Chinese medicine. J Acupunct Meridian Stud 2010;3(4):221–31. 链接1

[21] Ives JA, Van Wijk EP, Bat N, Crawford C, Walter A, Jonas WB, et al. Ultraweak photon emission as a non-invasive health assessment: a systematic review. PLoS One 2014;9(2):e87401. 链接1

[22] Van Wijk R, Van Wijk EP, Van Wietmarschen HA, Van der Greef J. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: a review. J Photochem Photobiol B 2014;139:39–46. 链接1

[23] Burgos RCR, Van Wijk EPA, Van Wijk R, He M, Van der Greef J. Crossing the boundaries of our current healthcare system by integrating ultra-weak photon emissions with metabolomics. Front Physiol 2016;7:611. 链接1

[24] Van Wijk R, Van Wijk EP, Wiegant FA, Ives J. Free radicals and low-level photon emission in human pathogenesis: state of the art. Indian J Exp Biol 2008;46 (5):273–309. 链接1

[25] Cifra M, Pospíšil P. Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B 2014;139:2–10. 链接1

[26] Prasad A, Pospíšil P. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes. PLoS One 2011;6(7):e22345. 链接1

[27] Kobayashi M, Takeda M, Sato T, Yamazaki Y, Kaneko K, Ito K, et al. In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci Res 1999;34(2):103–13. 链接1

[28] Sun M, Van Wijk E, Koval S, Van Wijk R, He M, Wang M, et al. Measuring ultraweak photon emission as a non-invasive diagnostic tool for detecting earlystage type 2 diabetes: a step toward personalized medicine. J Photochem Photobiol B 2017;166:86–93. 链接1

[29] Koek MM, Muilwijk B, Van der Werf MJ, Hankemeier T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 2006;78(4):1272–81. 链接1

[30] Van Wietmarschen HA, Van der Greef J, Schroën Y, Wang M. Evaluation of symptom, clinical chemistry and metabolomics profiles during Rehmannia six formula (R6) treatment: an integrated and personalized data analysis approach. J Ethnopharmacol 2013;150(3):851–9. 链接1

[31] Draisma HHM, Reijmers TH, Bobeldijk-Pastorova I, Meulman JJ, Estourgie-Van Burk GF, Bartels M, et al. Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs. OMICS 2008;12(1):17–31. 链接1

[32] Van Wijk EPA, Van Wijk R, Bajpai RP, Van der Greef J. Statistical analysis of the spontaneously emitted photon signals from palm and dorsal sides of both hands in human subjects. J Photochem Photobiol B 2010;99(3):133–43. 链接1

[33] Bajpai RP, Van Wijk EPA, Van Wijk R, Van der Greef J. Attributes characterizing spontaneous ultra-weak photon signals of human subjects. J Photochem Photobiol B 2013;129:6–16. 链接1

[34] Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 2015;43(W1):W251–7. 链接1

[35] Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics 2013;1(1):92–107. 链接1

[36] Van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, Van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006;7(1):142. 链接1

[37] Benkali K, Marquet P, Rérolle JP, Le Meur Y, Gastinel L. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry. BMC Genomics 2008;9(1):541. 链接1

[38] Petersen IL, Tomasi G, Sørensen H, Boll ES, Hansen HC, Christensen JH. The use of environmental metabolomics to determine glyphosate level of exposure in rapeseed (Brassica napus L.) seedlings. Environ Pollut 2011;159(10):3071–7. 链接1

[39] Van Wijk R, Van Wijk EPA, Bajpai RP. Photocount distribution of photons emitted from three sites of a human body. J Photochem Photobiol B 2006;84 (1):46–55. 链接1

[40] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498–504. 链接1

[41] Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, et al. Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics 2010;26 (7):971–3. 链接1

[42] Yin P, Peter A, Franken H, Zhao X, Neukamm SS, Rosenbaum L, et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin Chem 2013;59(5):833–45. 链接1

[43] Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 2006;20(8–10):341–51. 链接1

[44] Wiklund S, Johansson E, Sjöström L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 2008;80(1):115–22. 链接1

[45] Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 2014;105(2):141–50. 链接1

[46] Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011;17(4): 448–53. 链接1

[47] Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2007;29(2):99–108. 链接1

[48] Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012;8 (1):615. 链接1

[49] Bagdade JD, Ritter MC, Subbaiah PV. Accelerated cholesteryl ester transfer in patients with insulin-dependent diabetes mellitus. Eur J Clin Invest 1991;21 (2):161–7. 链接1

[50] Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005;36(3):232–40. 链接1

[51] Sjölin J, Hjort G, Friman G, Hambraeus L. Urinary excretion of 1- methylhistidine: a qualitative indicator of exogenous 3-methylhistidine and intake of meats from various sources. Metabolism 1987;36(12):1175–84. 链接1

[52] He M, Van Wijk E, Van Wietmarschen H, Wang M, Sun M, Koval S, et al. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis. J Photochem Photobiol B 2005;36(3):232–40. 链接1

[53] Chuang H, Lee E, Liu Y, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol 2007;3(1):140. 链接1

[54] Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12(1):56–68. 链接1

[55] Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature 2005;437(7061):1032–7. 链接1

[56] Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, et al. palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 2007;50(2):359–69. 链接1

相关研究