期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第5期 doi: 10.1016/j.eng.2019.06.001

地下水处理厂污泥合成磁性吸附剂吸附四环素的研究

a Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China

b School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

c Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China

d Guangdong Shouhui Lantian Engineering and Technology Corporation, Guangzhou 510075, China

收稿日期: 2018-11-05 修回日期: 2019-01-27 录用日期: 2019-03-07 发布日期: 2019-06-22

下一篇 上一篇

摘要

地下水处理厂污泥是源自于地下水处理厂处理水过程中产生的工业废弃物。对于污泥来说,我们常规的处理方法包括排入深井、海洋或者直接在垃圾填埋场填埋,但这些方法因其对环境的影响都不具有可持续发展性。在这里,我们展示了一种新的处理策略即将污泥进行回收,仅用NaOH溶液便可以通过一步简单的水热法制得磁赤铁矿磁性吸附剂(magnetic adsorbent, MA)。经过弱磁化处理后的污泥形成了含有水铁矿、赤铁矿、石英和钠长石的混合物。随着NaOH的加入,污泥中的水铁矿转化为磁赤铁矿和赤铁矿。该条件下产生的磁性颗粒,在吸附四环素(tetracycline, TC)后容易与水分离。由于水铁矿溶解在高浓度的NaOH溶液中,使得大量的Si/Al氧化物(如石英和钠长石)溶解到液体中,从而促进了水铁矿的转化。当NaOH浓度为2 mol·L–1时,制得的吸附剂MA2的饱和磁化强度达到8.2 emu·g–1,表面位浓度为0.75 mmol·g–1。MA2对水中TC的吸附动力学符合伪二级动力学模型,等温吸附实验符合Langmuir模型。MA2对TC的最大吸附量为362.3 mg·g–1,阳离子交换为吸附的主要机制。本研究首次证明了在不添加还原剂或外加Fe源的情况下,将回收的污泥制备成MA的方法,制备的材料可作为低成本吸附剂,在含TC的废水中具有很好的吸附能力。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Dotremont C, Molenberghs B, Doyen W, Bielen P, Huysman K. The recovery of backwash water from sand filters by ultrafiltration. Desalination 1999;126 (1):87–94. 链接1

[ 2 ] Osman SBS, Iqbal F. Possible stabilization of sludge from groundwater treatment plant using electrokinetic method. Appl Mech Mater 2014;567 (419):110–5. 链接1

[ 3 ] Zhu S, Fang S, Huo M, Yu Y, Chen Y, Yang X, et al. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue. J Hazard Mater 2015;292(113):173–9. 链接1

[ 4 ] Gibbons MK, Gagnon GA. Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids. Water Res 2010;44 (19):5740–9. 链接1

[ 5 ] Zhu S, Dong G, Yu Y, Yang J, Yang W, Fan W, et al. Hydrothermal synthesis of a magnetic adsorbent from wasted iron mud for effective removal of heavy metals from smelting wastewater. Environ Sci Pollut Res Int 2018;25 (23):22710–24. 链接1

[ 6 ] Liu J, Yu Y, Zhu S, Yang J, Song J, Fan W, et al. Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLoS One 2018;13(2):e0191229. 链接1

[ 7 ] Ong DC, Pingul-Ong SMB, Kan CC, de Luna MDG. Removal of nickel ions from aqueous solutions by manganese dioxide derived from groundwater treatment sludge. J Clean Prod 2018;190:443–51. 链接1

[ 8 ] Ngatenah SNI, Kutty SRM, Isa MH. Optimization of heavy metal removal from aqueous solution using groundwater treatment plant sludge (GWTPS). In: Proceedings of the International Conference on Environment; 2010 Dec 13–15; Penang, Malaysia; 2010. p. 1–9.

[ 9 ] Yang H, Jing L, Zhang B. Recovery of iron from vanadium tailings with coalbased direct reduction followed by magnetic separation. J Hazard Mater 2011;185(2–3):1405–11. 链接1

[10] Costa RC, Moura FC, Oliveira PE, Magalhães F, Ardisson JD, Lago RM. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI). Chemosphere 2010;78(9):1116–20. 链接1

[11] Sushil S, Alabdulrahman AM, Balakrishnan M, Batra VS, Blackley RA, Clapp J, et al. Carbon deposition and phase transformations in red mud on exposure to methane. J Hazard Mater 2010;180(1–3):409–18. 链接1

[12] Mohammed MA, Shitu A, Ibrahim A. Removal of methylene blue using low cost adsorbent: a review. Res J Chem Sci 2014;4(1):91–102. 链接1

[13] Arabi M, Ghaedi M, Ostovan A. Water compatible molecularly imprinted nanoparticles as a restricted access material for extraction of hippuric acid, a biological indicator of toluene exposure, from human urine. Microchim Acta 2017;184(3):879–87. 链接1

[14] Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S. Ce3+-ioninduced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 2016;6(1):31641. 链接1

[15] Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 2013;33(1):91–8. 链接1

[16] Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, et al. Modeling of competitive ultrasonic assisted removal of the dyes—methylene blue and safranin-O using Fe3O4 nanoparticles. Chem Eng J 2015;268:28–37. 链接1

[17] Ostovan A, Ghaedi M, Arabi M. Fabrication of water-compatible superparamagnetic molecularly imprinted biopolymer for clean separation of baclofen from bio-fluid samples: a mild and green approach. Talanta 2018;179:760–8. 链接1

[18] Arabi M, Ghaedi M, Ostovan A. Development of a lower toxic approach based on green synthesis of water-compatible molecularly imprinted nanoparticles for the extraction of hydrochlorothiazide from human urine. ACS Sustain Chem Eng 2017;5(5):3775–85. 链接1

[19] Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L. Hydrophilic multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins. ACS Appl Mater Interfaces 2018;10 (4):4140–50. 链接1

[20] Gupta VK, Atar N, Yola ML, Üstündag˘ Z, Uzun L. A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 2014;48:210–7. 链接1

[21] Sandroni V, Smith CMM. Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma–atomic emission spectrometry. Anal Chim Acta 2002;468(2):335–44. 链接1

[22] Duquette M, Hendershot W. Soil surface charge evaluation by back-titration: I. Theory and method development. Soil Sci Soc Am J 1993;57(5):1222–8. 链接1

[23] Barrón V, Torrent J, de Grave E. Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into hematite. Am Mineral 2003;88(11–12):1679–88. 链接1

[24] Cornell RM. Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays Clay Miner 1987;35(1):21–8. 链接1

[25] Liu Q, Barrón V, Torrent J, Eeckhout SG, Deng C. Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. J Geophys Res 2008;113(B1): B01103. 链接1

[26] Sidhu PS. Transformation of trace element-substituted maghemite to hematite. Clays Clay Miner 1988;36(1):31–8. 链接1

[27] Zhao J, Huggins FE, Feng Z, Lu FL, Shah N, Huffman GP. Structure of a nanophase iron oxide catalyst. J Catal 1993;143(2):499–509. 链接1

[28] Jianmin Z. Ferrihydrite: surface structure and its effects on phase transformation. Clays Clay Miner 1994;42(6):737–46. 链接1

[29] Brinza L, Vu HP, Shaw S, Mosselmans JFW, Benning LG. Effect of Mo and V on the hydrothermal crystallization of hematite from ferrihydrite: an in situ energy dispersive X-ray diffraction and X-ray absorption spectroscopy study. Cryst Growth Des 2015;15(10):4768–80. 链接1

[30] Ostovan A, Ghaedi M, Arabi M, Asfaram A. Hollow porous molecularly imprinted polymer for highly selective clean-up followed by influential preconcentration of ultra-trace glibenclamide from bio-fluid. J Chromatogr A 2017;1520:65–74. 链接1

[31] Arabi M, Ghaedi M, Ostovan A. Development of dummy molecularly imprinted based on functionalized silica nanoparticles for determination of acrylamide in processed food by matrix solid phase dispersion. Food Chem 2016;210:78–84. 链接1

[32] Arabi M, Ghaedi M, Ostovan A. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples. J Chromatogr B Analyt Technol Biomed Life Sci 2017;1048:102–10. 链接1

[33] Militello MC, Gaarenstroom SW. Manganese dioxide (MnO2) by XPS. Surf Sci Spectra 2001;8(3):200–6. 链接1

[34] Saravanan R, Gupta VK, Narayanan V, Stephen A. Visible light degradation of textile effluent using novel catalyst ZnO/c-Mn2O3. J Taiwan Inst Chem E 2014;45(4):1910–7. 链接1

[35] Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, et al. ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 2015;5(44):34645–51. 链接1

[36] Lan S, Wang X, Xiang Q, Yin H, Tan W, Qiu G, et al. Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides. Geochim Cosmochim Acta 2017;211:79–96. 链接1

[37] Sajih M, Bryan ND, Livens FR, Vaughan DJ, Descostes M, Phrommavanh V, et al. Adsorption of radium and barium on goethite and ferrihydrite: a kinetic and surface complexation modelling study. Geochim Cosmochim Acta 2014;146:150–63. 链接1

[38] Kulshrestha P, Giese Jr RF, Aga DS. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 2004;38(15):4097–105. 链接1

[39] Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 2016;221:1029–33. 链接1

[40] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem 1999;34(5):451–65. 链接1

[41] Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res Int 2013;20(5):2828–43. 链接1

[42] Gupta VK, Nayak A, Agarwal S, Tyagi I. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interface Sci 2014;417:420–30. 链接1

[43] Mittal A, Mittal J, Malviya A, Gupta VK. Removal and recovery of chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 2010;344 (2):497–507. 链接1

[44] Saleh TA, Gupta VK. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 2012;371(1):101–6. 链接1

[45] Yu B, Bai Y, Ming Z, Yang H, Chen L, Hu X, et al. Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Mater Chem Phys 2017;198:283–90. 链接1

[46] Liu Q, Zheng Y, Zhong L, Cheng X. Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat. J Environ Sci 2015;28:29–36. 链接1

[47] Zhou Q, Li Z, Shuang C, Li A, Zhang M, Wang M. Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chem Eng J 2012;210:350–6. 链接1

[48] Guan W, Wang X, Pan J, Lei J, Zhou Y, Lu C, et al. Synthesis of magnetic halloysite composites for the effective removal of tetracycline hydrochloride from aqueous solutions. Adsorpt Sci Technol 2012;30(7):579–91. 链接1

[49] Zhang M, Li A, Zhou Q, Shuang C, Zhou W, Wang M. Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins. Micropor Mesopor Mat 2014;184:105–11. 链接1

[50] Li B,Ma J, Zhou L, Qiu Y.Magneticmicrosphere to remove tetracycline from water: adsorption, H2O2 oxidation and regeneration. Chem Eng J 2017;330:191–201. 链接1

[51] Zhang B, Zhang H, Li X, Lei X, Li C, Yin D, et al. Synthesis of BSA/Fe3O4 magnetic composite microspheres for adsorption of antibiotics. Mater Sci Eng C 2013;33 (7):4401–8. 链接1

[52] Raeiatbina P, Açıkelb YS. Removal of tetracycline by magnetic chitosan nanoparticles from medical wastewaters. Desalination 2017;73:380–8. 链接1

[53] Yan X, Gan K, Tian B, Zhang J, Wang L, Lu D. Photo-fenton refreshable Fe3O4@HCS adsorbent for the elimination of tetracycline hydrochloride. Res Chem Intermed 2018;44(1):1–11. 链接1

[54] Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 2010;183(1–3):402–9. 链接1

[55] Gupta VK, Nayak A, Agarwal S. Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 2015;20(1):1–18. 链接1

[56] Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M. Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mat Sci Eng C Mater 2011;31(5):1062–7. 链接1

相关研究