期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第1期 doi: 10.1016/j.eng.2019.06.009

结构参数对激光熔化制造的2D五模结构泊松比和压缩模量的影响

a State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

b Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

收稿日期 :2018-07-04 修回日期 :2019-06-04 录用日期 : 2019-06-27 发布日期 :2019-11-09

下一篇 上一篇

摘要

近年来,超材料受到越来越多的关注。五模材料(pentamode materials, PM)作为一种超材料,具有近似于液体的弹性性质。本文通过改变五模结构的薄壁厚度和结构层数,对五模结构的力学性能进行了有限元分析,以获得优异的承载能力。结果表明,随着厚度从0.15 mm增加到0.45 mm,五模结构的压缩模量增大,泊松比减小。随着层数的增加,五模结构的泊松比迅速增大,最终达到0.50~0.55的稳定值。五模结构中应力分布的仿真结果证实,在薄壁和配重单元的交界处存在应力集中。为了验证模拟的力学性能结果,采用选择性激光熔化(selective laser melting, SLM)方法制备了Ti-6Al-4V合金的五模结构试样,并对其力学性能(泊松比和弹性模量)进行了实验研究。数值计算结果与实验结果吻合较好。本文的工作有助于同时具有承载力和五模特性的五模结构的设计和开发。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[1]  Liu RP, Ji CL, Zhao ZY, Zhou T. Metamaterials: reshape and rethink. Engineering 2015;1(2):179–84. 链接1

[2]  Lee JH, Singer JP, Thomas EL. Micro-/nanostructured mechanical metamaterials. Adv Mater 2012;24(36):4782–810. 链接1

[3]  Huang C, Chen L. Negative Poisson’s ratio in modern functional materials. Adv Mater 2016;28(37):8079–96. 链接1

[4]  Zadpoor AA. Mechanical meta-materials. Mater Horiz 2016;3(5):371–81. 链接1

[5]  Milton GW, Cherkaev AV. Which elasticity tensors are realizable?. J Eng Mater Technol 1995;117(4):483–93. 链接1

[6]  Chen H, Chan CT. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 2007;91(18):183518. 链接1

[7]  Popa BI, Cummer SA. Homogeneous and compact acoustic ground cloaks. Phys Rev B Condens Matter Mater Phys 2011;83(22):224304. 链接1

[8]  Stenger N, Wilhelm M, Wegener M. Experiments on elastic cloaking in thin plates. Phys Rev Lett 2012;108(1):014301. 链接1

[9]  Hu J, Zhou X, Hu G. A numerical method for designing acoustic cloak with arbitrary shapes. Comput Mater Sci 2009;46(3):708–12. 链接1

[10]  Méresse P, Audoly C, Croënne C, Hladky-Hennion AC. Acoustic coatings for maritime systems applications using resonant phenomena. C R Mec 2015;343 (12):645–55. 链接1

[11]  Norris AN. Acoustic metafluids. J Acoust Soc Am 2009;125(2):839–49. 链接1

[12]  Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat Commun 2014;5:4130. 链接1

[13]  Chen Y, Zheng MY, Liu XN, Bi YF, Sun ZY, Xiang P, et al. Broadband solid cloak for underwater acoustics. Phys Rev B 2017;95(18):180104. 链接1

[14]  Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M. On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 2012;100(19):191901. 链接1

[15]  Huang Y, Lu XG, Liang GY, Xu Z. Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes. Phys Lett A 2016;380(13):1334–8. 链接1

[16]  Zhao AG, Zhao ZG, Zhang XD, Cai X, Wang L, Wu T, et al. Design and experimental verification of a water-like pentamode material. Appl Phys Lett 2017;110(1):011907. 链接1

[17]  Cai X, Wang L, Zhao ZG, Zhao AG, Zhang XD, Wu T, et al. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters. Appl Phys Lett 2016;109(13):131904. 链接1

[18]  Lu BH, Li DC, Tian XY. Development trends in additive manufacturing and 3D printing. Engineering 2015;1(1):85–9. 链接1

[19]  Clausen A, Aage N, Sigmund O. Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2016;2(2):250–7. 链接1

[20]  Schittny R, Bückmann T, Kadic M, Wegener M. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Appl Phys Lett 2013;103(23):231905. 链接1

[21]  Kadic M, Bückmann T, Schittny R, Gumbsch P, Wegener M. Pentamode metamaterials with independently tailored bulk modulus and mass density. Phys Rev Appl 2014;2(5):054007. 链接1

[22]  Amendola A, Smith CJ, Goodall R, Auricchio F, Feo L, Benzoni G, et al. Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Compos Struct 2016;142:254–62. 链接1

[23]  Zhang JL, Song B, Wei QS, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 2019;35(2):270–84. 链接1

[24]  Cai C, Radoslaw C, Zhang JL, Yan Q, Wen SF, Song B, et al. In-situ preparation and formation of TiB/Ti–6Al–4V nanocomposite via laser additive manufacturing: microstructure evolution and tribological behavior. Powder Technol 2019;342:73–84. 链接1

[25]  Zhang YJ, Zhang JL, Yan Q, Zhang L, Wang M, Song B, et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: enhanced strength and improved corrosion resistance. Scr Mater 2018;148:20–3. 链接1

[26]  Wang M, Song B, Wei QS, Zhang YJ, Shi YS. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Mater Sci Eng A 2019;739:463–72. 链接1

[27]  Hedayati R, Leeflang AM, Zadpoor AA. Additively manufactured metallic pentamode meta-materials. Appl Phys Lett 2017;110(9):091905. 链接1

[28]  Zhang L, Song B, Zhao AG, Liu RJ, Yang L, Shi YS. Study on mechanical properties of honeycomb pentamode structures fabricated by laser additive manufacturing: numerical simulation and experimental verification. Compos Struct 2019;226:111199. 链接1

[29]  Chastand V, Quaegebeur P, Maia W, Charkaluk E. Comparative study of fatigue properties of Ti–6Al–4V specimens built by electron beam melting (EBM) and selective laser melting (SLM). Mater Charact 2018;143:76–81. 链接1

[30]  Günther J, Leuders S, Koppa P, Tröster T, Henkel S, Biermann H, et al. On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti–6Al–4V processed by SLM. Mater Des 2018;143:1–11. 链接1

[31]  Xiao LJ, Song WD. Additively-manufactured functionally graded Ti–6Al–4V lattice structures with high strength under static and dynamic loading: experiments. Int J Impact Eng 2018;111:255–72. 链接1

[32]  Choy SY, Sun CN, Leong KF, Wei J. Compressive properties of Ti–6Al–4V lattice structures fabricated by selective laser melting: design, orientation and density. Addit Manuf 2017;16:213–24. 链接1

[33]  Wang ZH, Cai CX, Chu YY, Liu GS. Pentamode metamaterials for acoustic wave control. Opto-Electronic Eng 2017;44(1):122. 链接1

[34]  Cho JY, Xu M, Brandt M, Qian M. Selective laser melting-fabricated Ti–6Al–4V alloy: microstructural inhomogeneity, consequent variations in elastic modulus and implications. Opt Laser Technol 2019;111:664–70. 链接1

[35]  Lee YT, Welsch G. Young’s modulus and damping of Ti–6Al–4V alloy as a function of heat treatment and oxygen concentration. Mater Sci Eng A 1990;128(1):77–89. 链接1

[36]  Xiong JP, Gu DD, Chen HY, Dai DH, Shi QM. Structural optimization of reentrant negative Poisson’s ratio structure fabricated by selective laser melting. Mater Des 2017;120:307–16. 链接1

[37]  Li D, Ma J, Dong L, Lakes RS. Stiff square structure with a negative Poisson’s ratio. Mater Lett 2017;188:149–51. 链接1

[38]  Li D, Ma J, Dong L, Lakes RS. Three-dimensional stiff cellular structures with negative Poisson’s ratio. Phys Status Solidi B 2017;254(12):1600785. 链接1

[39]  Li C, Lei H, Liu Y, Zhang X, Xiong J, Zhou H, et al. Crushing behavior of multilayer metal lattice panel fabricated by selective laser melting. Int J Mech Sci 2018;145:389–99. 链接1

[40]  Amendola A, Carpentieri G, Feo L, Fraternali F. Bending dominated response of layered mechanical metamaterials alternating pentamode lattices and confinement plates. Compos Struct 2016;157:71–7. 链接1

[41]  Yang L, Yan C, Han C, Chen P, Yang S, Shi Y. Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting. Int J Mech Sci 2018;148:149–57. 链接1

[42]  Yan CZ, Hao L, Hussein A, Young P, Raymont D. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 2014;55:533–41. 链接1

[43]  Han C, Li Y, Wang Q, Wen S, Wei Q, Yan C, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater 2018;80:119–27. 链接1

[44]  Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1999. 链接1

[45]  Yang L, Yan CZ, Cao WC, Liu ZF, Song B, Wen SF, et al. Compression– compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater 2019;181:49–66. 链接1

相关研究