期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第1期 doi: 10.1016/j.eng.2019.07.024

基于三维扫描振镜的原位激光加工方法研究

a State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China

b Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an 710049, China

c Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

收稿日期 :2019-04-04 修回日期 :2019-06-14 录用日期 : 2019-07-12 发布日期 :2019-11-21

下一篇 上一篇

摘要

本文通过研究三维扫描振镜及工业相机耦合构建的三维原位激光加工系统,提出了一种基于线结构光的工件三维扫描测量方式来获取工件三维模型信息的方法。该测量方法创新地将高度标定法用于三维测量精度的提高中,并成功地保证了后续加工时激光在三维工件上的精确聚焦。为了实现便捷高效的激光三维加工,研究人员开发了相关的原位加工软件,并通过实验案例验证了基于三维扫描振镜的原位激光加工方法与实验装置的可行性及实用性。与传统的线结构光测量方法相比,本研究的优点在于提出的方法不需要光平面标定和配置额外的运动轴来实现三维重建,并体现出了较高便捷性及较低成本优势:通过原位的激光加工方式可以实现测量加工一体化,进而降低时间和劳动成本。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[1]  Yang L, Cui J, Wang Y, Hou C, Xie H, Mei X, et al. Nanospot welding of carbon nanotubes using near-field enhancement effect of AFM probe irradiated by optical fiber probe laser. RSC Adv 2015;5(70):56677–85. 链接1

[2]  Cui J, Yang L, Wang Y. Nanowelding configuration between carbon nanotubes in axial direction. Appl Surf Sci 2013;264(1):713–7. 链接1

[3]  Cui J, Zhang J, He X, Yang X, Mei X, Wang W, et al. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes. J Nanopart Res 2017;19(3):90. 链接1

[4]  Dubey AK, Yadava V. Laser beam machining—a review. Int J Mach Tools Manuf 2008;48(6):609–28. 链接1

[5]  Gao S, Huang H. Recent advances in micro- and nano-machining technologies. Front Mech Eng 2017;12(1):18–32. 链接1

[6]  Duan W, Wang K, Dong X, Mei X, Wang W, Fan Z. Experimental characterizations of burr deposition in Nd:YAG laser drilling: a parametric study. Int J Adv Manuf Technol 2015;76(9–12):1529–42. 链接1

[7]  Fan Z, Dong X, Wang K, Duan W, Wang R, Mei X, et al. Effect of drilling allowance on TBC delamination, spatter and re-melted cracks characteristics in laser drilling of TBC coated superalloys. Int J Mach Tools Manuf 2016;106:1–10. 链接1

[8]  Hong KM, Shin YC. Prospects of laser welding technology in the automotive industry: a review. J Mater Process Technol 2017;245:46–69. 链接1

[9]  Sun X, Wang W, Mei X, Pan A, Liu B, Li M. Controllable dot-matrix marking on titanium alloy with anti-reflective micro-structures using defocused femtosecond laser. Opt Laser Technol 2019;115:298–305. 链接1

[10]  Wang X, Zheng H, Wan Y, Feng W, Lam YC. Picosecond laser surface texturing of a Stavax steel substrate for wettability control. Engineering 2018;4 (6):816–21. 链接1

[11]  Pan A, Wang W, Liu B, Mei X, Yang H, Zhao W. Formation of high-spatialfrequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses. Mater Des 2017;121:126–35. 链接1

[12]  Li J, Wang W, Mei X, Sun X, Pan A. The formation of convex microstructures by laser irradiation of dual-layer polymethylmethacrylate (PMMA). Opt Laser Technol 2018;106:461–8. 链接1

[13]  Shao J, Ding Y, Wang W, Mei X, Zhai H, Tian H, et al. Generation of fullycovering hierarchical micro-/nano-structures by nanoimprinting and modified laser swelling. Small 2014;10(13):2595–601. 链接1

[14]  Yoo HW, Ito S, Schitter G. High speed laser scanning microscopy by iterative learning control of a galvanometer scanner. Control Eng Pract 2016;50:12–21. 链接1

[15]  Luo X, Li J, Lucas M. Galvanometer scanning technology for laser additive manufacturing. In: Gu B, Helvajian H, Piqué A, Dunsky CM, Liu J, editors. SPIE: Proceedings of the SPIE 10095, Laser 3D manufacturing IV; 2017 Jan 28–Feb 2; San Francisco, CA, USA. Bellingham: SPIE. 链接1

[16]  Yu Y, Bai S, Wang S, Hu A. Ultra-short pulsed laser manufacturing and surface processing of microdevices. Engineering 2018;4(6):779–86. 链接1

[17]  Cao BX, Hoang PL, Ahn S, Kim J, Noh J. High-precision detection of focal position on a curved surface for laser processing. Precis Eng 2017;50:204–10. 链接1

[18]  Noh J, Cho I, Lee S, Na S, Lee JH. Fabrication of microgrooves on a curved surface by the confocal measurement system using pulse laser and continuous laser. Rev Sci Instrum 2012;83(3):033106. 链接1

[19]  Noh J, Suh J, Na S. Fabrication of microgrooves on roll surfaces using a scanner and a telecentric lens. Jpn J Appl Phys 2010;49(5):311–33. 链接1

[20]  Cao BX, Bae M, Sohn H, Choi J, Kim Y, Kim JO, et al. Design and performance of a focus-detection system for use in laser micromachining. Micromachines (Basel) 2016;7(1):E2. 链接1

[21]  Wang X, Duan J, Jiang M, Ke S, Wu B, Zeng X. Study of laser precision ablating texture patterns on large-scale freeform surface. Int J Adv Manuf Technol 2017;92(9–12):4571–81. 链接1

[22]  Yan H, Chen J, Shao J. Study on laser dots marking based on dynamic focusing galvanometer system. Chin J Lasers 2013;40(9):91–6. 链接1

[23]  Liu H, Wang S, Ma C, Wang H. Study on an actuator with giant magnetostrictive materials for driving galvanometer in selective laser sintering precisely. Int J Mechatronics Manuf Syst 2015;8(3–4):116–33. 链接1

[24]  Xiao HB, Zhou YQ, Liu MJ. Experimental research on 3D ultraviolet laser precision marking processing technology. In: Proceedings of the 2nd International Conference on Computer, Mechatronics and Electronic Engineering; 2017 Dec 24–25; Xiamen, China. Lancaster: DEStech Publications, Inc.; 2017. p. 516–20. 链接1

[25]  Diaci J, Bracˇun D, Gorkicˇ A, Mozˇina J. Rapid and flexible laser marking and engraving of tilted and curved surfaces. Opt Lasers Eng 2011;49(2):195–9. 链接1

[26]  Li X, Lian Q, Li D, Xin H, Jia S. Development of a robotic arm based hydrogel additive manufacturing system for in-situ printing. Appl Sci 2017;7(1):73. 链接1

[27]  Lian Q, Li X, Li D, Gu H, Bian W, He X. Path planning method based on discontinuous grid partition algorithm of point cloud for in situ printing. Rapid Prototyping J 2019;25(3):602–13. 链接1

[28]  Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 2016;95:431–45. 链接1

[29]  Goda I, L’Hostis G, Guerlain P. In-situ non-contact 3D optical deformation measurement of large capacity composite tank based on close-range photogrammetry. Opt Lasers Eng 2019;119:37–55. 链接1

[30]  Geng J. Structured-light 3D surface imaging: a tutorial. Adv Opt Photonics 2011;3(2):128–60. 链接1

[31]  Salvi J, Fernandez S, Pribanic T, Llado X. A state of the art in structured light patterns for surface profilometry. Pattern Recognit 2010;43(8):2666–80. 链接1

[32]  Zhang S. High-speed 3D shape measurement with structured light methods: a review. Opt Lasers Eng 2018;106:119–31. 链接1

[33]  Perhavec T, Gorkicˇ A, Bracˇun D, Diaci J. A method for rapid measurement of laser ablation rate of hard dental tissue. Opt Laser Technol 2009;41 (4):397–402. 链接1

[34]  Zhou P, Xu K, Wang D. Rail profile measurement based on line-structured light vision. IEEE Access 2018;6:16423–31. 链接1

[35]  Liu S, Tan Q, Zhang Y. Shaft diameter measurement using structured light vision. Sensors (Basel) 2015;15(8):19750–67. 链接1

[36]  Li J, Liu G, Liu Y. A dynamic volume measurement system with structured light vision. In: Proceedings of 2016 31st Youth Academic Annual Conference of Chinese Association of Automation; 2016 Nov 11–13; Wuhan, China. New York: IEEE; 2016. p. 251–5. 链接1

[37]  Goshtasby A, Shyu HL. Edge detection by curve fitting. Image Vis Comput 1995;13(3):169–77. 链接1

[38]  Steger C. An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 1998;20(2):113–25. 链接1

[39]  Xie Z, Wang X, Chi S. Simultaneous calibration of the intrinsic and extrinsic parameters of structured-light sensors. Opt Lasers Eng 2014;58:9–18. 链接1

[40]  Liu Z, Li X, Li F, Zhang G. Calibration method for line-structured light vision sensor based on a single ball target. Opt Lasers Eng 2015;69:20–8. 链接1

[41]  Kiddee P, Fang Z, Tan M. A practical and intuitive calibration technique for cross-line structured light. Optik 2016;127(20):9582–602. 链接1

相关研究