期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第5期 doi: 10.1016/j.eng.2019.07.025

初生多肽相关复合物调控小麦禾谷镰刀菌生长发育和致病性

a State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
b College of Agriculture, Guizhou University, Guiyang 550025, China
c Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
# These authors contributed equally to this work.

收稿日期: 2018-12-25 修回日期: 2019-04-16 录用日期: 2019-07-12 发布日期: 2020-01-14

下一篇 上一篇

摘要

对植物病原菌而言,维持蛋白质内稳态对其生存和繁殖至关重要。然而,当前对参与维持蛋白质内稳态的因子在真菌致病过程中的作用仍缺乏科学的认识。在本研究中,我们鉴定了十大病原真菌之一—禾谷镰刀菌(Fusarium graminearum)的初生多肽相关复合物(FgNAC)的功能。研究发现,FgNAC中的α亚基(FgNACα)与其在酵母和其他物种中的同源基因在结构和功能方面表现出高度相似性。禾谷镰刀菌NACα缺失突变体虽可存活但其菌丝生长、分生孢子产生和致病性受到严重削弱。此外,通过酵母双杂交实验发现FgNACα可以和FgNACβ亚基发生互作。亚细胞定位结果表明FgNACα和FgNACβ主要发生在细胞质中。未来的研究应致力于解析初生多肽相关复合物调节蛋白质代谢从而调控真菌发育和致病性的作用机制。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 2004;19(10):535–44. 链接1

[ 2 ] Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012;484(7393):186–94. 链接1

[ 3 ] Siersleben S, Penselin D, Wenzel C, Albert S, Knogge W. PFP1, a gene encoding an Epc-N domain-containing protein, is essential for pathogenicity of the barley pathogen Rhynchosporium commune. Eukaryot Cell 2014;13(8):1026–35. 链接1

[ 4 ] Kogan GL, Gvozdev VA. Multifunctional nascent polypeptide-associated complex (NAC). Mol Biol 2014;48(2):189–96. 链接1

[ 5 ] Beatrix B, Sakai H, Wiedmann M. The a and b subunit of the nascent polypeptide-associated complex have distinct functions. J Biol Chem 2000;275 (48):37838–45. 链接1

[ 6 ] Reimann B, Bradsher J, Franke J, Hartmann E, Wiedmann M, Prehn S, et al. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 1999;15(5):397–407. 链接1

[ 7 ] Yang KS, Kim HS, Jin UH, Lee SS, Park JA, Lim YP, et al. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants. Planta 2007;225(6):1459–69. 链接1

[ 8 ] Raue U, Oellerer S, Rospert S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J Biol Chem 2007;282(11):7809–16. 链接1

[ 9 ] Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI. The nascent polypeptideassociated complex is a key regulator of proteostasis. EMBO J 2013;32 (10):1451–68. 链接1

[10] Bukau B, Deuerling E, Pfund C, Craig EA. Getting newly synthesized proteins into shape. Cell 2000;101(2):119–22. 链接1

[11] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002;295(5561):1852–8. 链接1

[12] Wegrzyn RD, Deuerling E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell Mol Life Sci 2005;62(23):2727–38. 链接1

[13] Lauring B, Sakai H, Kreibich G, Wiedmann M. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc Natl Acad Sci USA 1995;92(12):5411–5. 链接1

[14] Wiedmann B, Sakai H, Davis TA, Wiedmann M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 1994;370 (6489):434–40. 链接1

[15] George R, Beddoe T, Landl K, Lithgow T. The yeast nascent polypeptideassociated complex initiates protein targeting to mitochondria in vivo. Proc Natl Acad Sci USA 1998;95(5):2296–301. 链接1

[16] Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, et al. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J Cell Biol 2010;189(1):57–68. 链接1

[17] Figueroa M, Hammond-Kosack KE, Solomon PS. A review of wheat diseases—a field perspective. Mol Plant Pathol 2018;19(6):1523–36. 链接1

[18] Ding S, Mehrabi R, Koten C, Kang Z, Wei Y, Seong K, et al. Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryot Cell 2009;8(6):867–76. 链接1

[19] Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, et al. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 2007;44(11):1191–204. 链接1

[20] Stepien L, Chelkowski J. Fusarium head blight of wheat: pathogenic species and their mycotoxins. World Mycotoxin J 2010;3(2):107–19. 链接1

[21] Wang X, Cui Y, Fan F, Song Y, Ren J, Meng Q, et al. Phylogenetic, carbendazim sensitivity and mycotoxin genotype analyses of Fusarium graminearum complex species isolated from wheat Fusarium head blight in China. J Phytopathol 2010;158(7–8):576–8. 链接1

[22] Suga H, Kageyama K, Shimizu M, Hyakumachi M. A natural mutation involving both pathogenicity and perithecium formation in the Fusarium graminearum species complex. G3 Genes Genomes Genet 2016;6(12):3883–92. 链接1

[23] Park AR, Cho AR, Seo JA, Min K, Son H, Lee J, et al. Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet Biol 2012;49 (7):511–20. 链接1

[24] Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007;317(5843):1400–2. 链接1

[25] Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, et al. The genome sequence of Schizosaccharomyces pombe. Nature 2002;415 (6874):871–80. 链接1

[26] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23(21):2947–8. 链接1

[27] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33(7):1870–4. 链接1

[28] Catlett NL, Lee BN, Yoder OC, Turgeon BG. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Rep 2003;50(1):9–11. 链接1

[29] Liu YJ, Liu X, Chen H, Zheng P, Wang W, Wang L, et al. A plastid-localized pentatricopeptide repeat protein is required for both pollen development and plant growth in rice. Sci Rep 2017;7(1):11484. 链接1

[30] Yuan TL, Zhang Y, Yu XJ, Cao XY, Zhang D. Optimization of transformation system of Fusarium graminearum. Plant Physiol Commun 2008;44:251–6. 链接1

[31] Hou ZM, Xue CY, Peng YL, Katan T, Kistler HC, Xu JR. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 2002;15(11):1119–27. 链接1

[32] Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 2007;20 (6):627–36. 链接1

[33] Liu N, Fan F, Qiu D, Jiang L. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 2013;58– 59:42–52. 链接1

[34] Zhang H, Xue C, Kong L, Li G, Xu JR. A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae. Eukaryot Cell 2011;10(8):1062–70. 链接1

[35] Sweigard JA, Chumley FG, Valent B. Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet 1992;232(2):183–90. 链接1

[36] Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 2017;34(7):1812–9. 链接1

[37] Ponce-Rojas JC, Avendaño-Monsalve MC, Yañez-Falcón AR, Jaimes-Miranda F, Garay E, Torres-Quiroz F, et al. abʹ-NAC cooperates with Sam37 to mediate early stages of mitochondrial protein import. FEBS J 2017;284(5):814–30. 链接1

[38] Lauring B, Kreibich G, Weidmann M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc Natl Acad Sci USA 1995;92(21):9435–9. 链接1

[39] George R, Walsh P, Beddoe T, Lithgow T. The nascent polypeptide-associated complex (NAC) promotes interaction of ribosomes with the mitochondrial surface in vivo. FEBS Lett 2002;516(1–3):213–6. 链接1

[40] Ott AK, Locher L, Koch M, Deuerling E. Functional dissection of the nascent polypeptide-associated complex in Saccharomyces cerevisiae. PLoS ONE 2015;10(11):e0143457. 链接1

[41] Kaido M, Inoue Y, Takeda Y, Sugiyama K, Takeda A, Mori M, et al. Downregulation of the NbNACa1 gene encoding a movement-proteininteracting protein reduces cell-to-cell movement of brome mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact 2007;20(6):671–81. 链接1

[42] Rospert S, Dubaquié Y, Gautschi M. Nascent-polypeptide-associated complex. Cell Mol Life Sci 2002;59(10):1632–9. 链接1

[43] Li X, Guo M, Xu D, Chen F, Zhang H, Pan Y, et al. The nascent-polypeptideassociated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum. Mycologia 2015;107(6):1130–7. 链接1

[44] Li S, Peng W, Chen X, Geng X, Sun J. Identification and characterization of nascent polypeptide-associated complex alpha from Chinese mitten crab (Eriocheir sinensis): a novel stress and immune response gene in crustaceans. Fish Shellfish Immunol 2016;48:54–61. 链接1

[45] Li S, Chen X, Geng X, Zhan W, Sun J. Identification and expression analysis of nascent polypeptide-associated complex alpha gene in response to immune challenges in Japanese flounder Paralichthys olivaceus. Fish Shellfish Immunol 2015;46(2):261–7. 链接1

[46] Dahal D, Pich A, Braun HP, Wydra K. Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol Biol 2010;73 (6):643–58. 链接1

相关研究