期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第3期 doi: 10.1016/j.eng.2019.08.015

医疗保健中的人工智能——综述与预测性案例研究

a School of Engineering, Westlake University, Hangzhou 310024, China
b Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
c Polystim Neurotech Laboratory, Polytechnique Montréal, Montréal H3T1J4, Canada
d Institute of VLSI Design, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

收稿日期: 2019-02-10 修回日期: 2019-08-16 录用日期: 2019-08-26 发布日期: 2020-01-03

下一篇 上一篇

摘要

近年来,人工智能在软件算法、硬件实现和应用等领域得到了迅速发展。本文综述了人工智能在生物医学中应用的最新进展,包括疾病诊断、生活辅助、生物医学信息处理和生物医学研究。综述的目的是跟踪新的科学成就,了解人工智能在生物医学中的巨大潜力和相关技术的适用性,并为相关领域的研究人员提供启示。可以断言,正如人工智能本身一样,人工智能在生物医学中的应用尚处于早期阶段。新的进展和突破将继续推进,不断深入并扩大广度,并在不久的将来迅速发展。本文以人工智能在癫痫发作和膀胱功能失调预测方面的应用的两个案例来说明其在生物医疗等方面的应用。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Minsky M. Steps toward artificial intelligence. Proc IRE 1961;49(1):8–30. 链接1

[ 2 ] Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, et al. Autonomous mental development by robots and animals. Science 2001;291 (5504):599–600. 链接1

[ 3 ] Wooldridge M, Jennings NR. Intelligent agents: theory and practice. Knowl Eng Rev 1995;10(2):115–52. 链接1

[ 4 ] Huang G, Huang GB, Song S, You K. Trends in extreme learning machines: a review. Neural Netw 2015;61:32–48. 链接1

[ 5 ] Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 1982;79(8):2554–8. 链接1

[ 6 ] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998;393(6684):440–2. 链接1

[ 7 ] Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 2002;64:355–405. 链接1

[ 8 ] Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85–117. 链接1

[ 9 ] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44. 链接1

[10] Arel I, Rose DC, Karnowski TP. Deep machine learning—a new frontier in artificial intelligence research. IEEE Comput Intell Mag 2010;5(4):13–8. 链接1

[11] Dinkelbach HU, Vitay J, Beuth F, Hamker FH. Comparison of GPU- and CPUimplementations of mean-firing rate neural networks on parallel hardware. Network Comput Neural Syst 2012;23(4):212–36. 链接1

[12] Naveros F, Garrido JA, Carrillo RR, Ros E, Luque NR. Corrigendum: event- and time-driven techniques using parallel CPU–GPU co-processing for spiking neural networks. Front Neuroinform 2018;12:24. 链接1

[13] Naveros F, Luque NR, Garrido JA, Carrillo RR, Anguita M, Ros E. A spiking neural simulator integrating event-driven and time-driven computation schemes using parallel CPU–GPU co-processing: a case study. IEEE Trans Neural Netw Learn Syst 2015;26(7):1567–74. 链接1

[14] Nurvitadhi E, Sheffield D, Sim J, Mishra A, Venkatesh G, Marr D. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In: Proceedings of 2016 International Conference on Field-Programmable Technology; 2016 Dec 7–9; Xi’an, China; 2016. p. 77–84. 链接1

[15] Bartolozzi C, Indiveri G. Synaptic dynamics in analog VLSI. Neural Comput 2007;19(10):2581–603. 链接1

[16] Kwon MW, Baek MH, Hwang S, Park K, Jang T, Kim T, et al. Integrate-and-fire neuron circuit using positive feedback field effect transistor for low power operation. J Appl Phys 2018;124(15):152107. 链接1

[17] Grollier J, Querlioz D, Stiles MD. Spintronic nanodevices for bioinspired computing. Proc IEEE 2016;104(10):2024–39. 链接1

[18] Jeong H, Shi L. Memristor devices for neural networks. J Phys D Appl Phys 2018;52(2):023003. 链接1

[19] Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015;521(7550):61–4. 链接1

[20] Wen S, Huang T, Zeng Z, Chen Y, Li P. Circuit design and exponential stabilization of memristive neural networks. Neural Netw 2015;63:48–56. 链接1

[21] Zhang X, Huang A, Hu Q, Xiao Z, Chu PK. Neuromorphic computing with memristor crossbar. Phys Status Solidi A 2018;215(13):1700875. 链接1

[22] Yoshida J. IBM guns for 8-bit AI breakthroughs [Internet]. Cambridge: EE Times; 2018 Dec 3 [cited 2019 Jan 17]. Available from: https://www. eetimes.com/document.asp?doc_id=1334029&utm_source=eetimes&utm_ medium=networksearch. 链接1

[23] Marshall RC, Freed DB, Karow CM. Learning of subordinate category names by aphasic subjects: a comparison of deep and surface-level training methods. Aphasiology 2001;15(6):585–98. 链接1

[24] Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? J Mach Learn Res 2010;11:625–60. 链接1

[25] Yuan X, Xie L, Abouelenien M. A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data. Pattern Recognit 2018;77:160–72. 链接1

[26] Rodríguez-Pérez R, Bajorath J. Prediction of compound profiling matrices, part II: relative performance of multitask deep learning and random forest classification on the basis of varying amounts of training data. ACS Omega 2018;3(9):12033–40. 链接1

[27] Dudek-Dyduch E, Tadeusiewicz R, Horzyk A. Neural network adaptation process effectiveness dependent of constant training data availability. Neurocomputing 2009;72(13–15):3138–49. 链接1

[28] Chiang M, Zhang T. Fog and IoT: an overview of research opportunities. IEEE Internet Things J 2016;3(6):854–64. 链接1

[29] Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: a review. Neurocomputing 2016;187:27–48. 链接1

[30] Nguyen H, Kieu LM, Wen T, Cai C. Deep learning methods in transportation domain: a review. IET Intell Transp Syst 2018;12(9):998–1004. 链接1

[31] Yang D, Jiang K, Zhao D, Yu C, Cao Z, Xie S, et al. Intelligent and connected vehicles: current status and future perspectives. Sci China Technol Sci 2018;61(10):1446–71. 链接1

[32] Alshahrani S, Kapetanios E. Are deep learning approaches suitable for natural language processing? In: Métais E, Meziane F, Saraee M, Sugumaran V, Vadera S, editors. Natural language processing and information systems. Cham: Springer; 2016. p. 343–9. 链接1

[33] Kim TH. Emerging approach of natural language processing in opinion mining: a review. In: Tomar GS, Grosky WI, Kim TH, Mohammed S, Saha SK, editors. Ubiquitous computing and multimedia applications. Berlin: Springer; 2010. p. 121–8. 链接1

[34] Schaal S. Is imitation learning the route to humanoid robots? Trends Cogn Sci 1999;3(6):233–42. 链接1

[35] Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018;2(10):719–31. 链接1

[36] Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of deep learning in biomedicine. Mol Pharm 2016;13(5):1445–54. 链接1

[37] Peng Y, Zhang Y, Wang L. Artificial intelligence in biomedical engineering and informatics: an introduction and review. Artif Intell Med 2010;48(2–3):71–3. 链接1

[38] Dahal N, Nandagopal N, Nafalski A. Nedic Z. Modeling of cognition using EEG: a review and a new approach. In: Proceedings of 2011 IEEE Region 10 Conference; 2011 Nov 21–24; Bali, Indonesia; 2011. p. 1045–9. 链接1

[39] Dahmani K, Tahiri A, Habert O, Elmeftouhi Y. An intelligent model of home support for people with loss of autonomy: a novel approach. In: Proceedings of 2016 International Conference on Control, Decision and Information Technologies; 2016 Apr 6–8; St. Julian’s, Malta; 2016. p. 182–5. 链接1

[40] Rabhi Y, Mrabet M, Fnaiech F. A facial expression controlled wheelchair for people with disabilities. Comput Methods Programs Biomed 2018; 165:89–105. 链接1

[41] Hudec M, Smutny Z. RUDO: a home ambient intelligence system for blind people. Sensors 2017;17(8):1926. 链接1

[42] Tumpa SN, Islam AB, Ankon MTM. Smart care: an intelligent assistant for pregnant mothers. In: Proceedings of 2017 4th International Conference on Advances in Electrical Engineering; 2017 Sep 28–30; Dhaka, Bangladesh; 2017. p. 754–9. 链接1

[43] Wu Q, Zhang YD, Tao W, Amin MG. Radar-based fall detection based on Doppler time–frequency signatures for assisted living. IET Radar Sonar Navig 2015;9(2):164–72. 链接1

[44] Lloret J, Canovas A, Sendra S, Parra L. A smart communication architecture for ambient assisted living. IEEE Commun Mag 2015;53(1):26–33. 链接1

[45] García-Vázquez JP, Rodríguez MD, Tentori ME, Saldaña D, Andrade ÁG, Espinoza AN. An agent-based architecture for developing activity-aware systems for assisting elderly. J Univers Comput Sci 2010;16(12):1500–20. 链接1

[46] Lai DTH, Begg RK, Palaniswami M. Computational intelligence in gait research: a perspective on current applications and future challenges. IEEE Trans Inf Technol Biomed 2009;13(5):687–702. 链接1

[47] Chin LC, Basah SN, Yaacob S, Juan YE, Kadir AKAB. Camera systems in human motion analysis for biomedical applications. In: Proceedings of International Conference on Mathematics, Engineering and Industrial Applications 2014; 2014 May 28–30; Penang, Malaysia; 2014. p. 090006. 链接1

[48] Man DWK, Tam SF, Hui-Chan CWY. Learning to live independently with expert systems in memory rehabilitation. NeuroRehabilitation 2003;18 (1):21–9. 链接1

[49] Ben Abacha A, Zweigenbaum P. MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inf Process Manage 2015;51(5):570–94. 链接1

[50] Sarrouti M, Ouatik El Alaoui S. A machine learning-based method for question type classification in biomedical question answering. Methods Inf Med 2017;56(3):209–16. 链接1

[51] Sarrouti M, El Alaoui SO. A generic document retrieval framework based on UMLS similarity for biomedical question answering system. In: Proceedings of the 8th KES International Conference on Intelligent Decision Technologies; 2016 Jun 15–17; Puerto de la Cruz, Spain; 2016. p. 207–16. 链接1

[52] Sarrouti M, El Alaoui SO. A yes/no answer generator based on sentimentword scores in biomedical question answering. Int J Healthc Inf Syst Inform 2017;12(3):62–74. 链接1

[53] Shahar Y. Timing is everything: temporal reasoning and temporal data maintenance in medicine. In: Horn W, Shahar Y, Lindberg G, Andreassen S, Wyatt J, editors. Artificial intelligence in medicine. Berlin: Springer; 1999. p. 30–46. 链接1

[54] Rodriguez-Esteban R, Iossifov I, Rzhetsky A. Imitating manual curation of text-mined facts in biomedicine. PLoS Comput Biol 2006;2(9):e118. 链接1

[55] Zhou L, Hripcsak G. Temporal reasoning with medical data—a review with emphasis on medical natural language processing. J Biomed Inform 2007;40 (2):183–202. 链接1

[56] Athenikos SJ, Han H. Biomedical question answering: a survey. Comput Methods Programs Biomed 2010;99(1):1–24. 链接1

[57] Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med 2018;284 (6):603–19. 链接1

[58] Almeida H, Meurs MJ, Kosseim L, Tsang A. Data sampling and supervised learning for HIV literature screening. IEEE Trans Nanobioscience 2016;15 (4):354–61. 链接1

[59] Névéol A, Shooshan SE, Humphrey SM, Mork JG, Aronson AR. A recent advance in the automatic indexing of the biomedical literature. J Biomed Inform 2009;42(5):814–23. 链接1

[60] Choi BK, Dayaram T, Parikh N, Wilkins AD, Nagarajan M, Novikov IB, et al. Literature-based automated discovery of tumor suppressor p53 phosphorylation and inhibition by NEK2. Proc Natl Acad Sci USA 2018;115 (42):10666–71. 链接1

[61] Yang Z, Tang N, Zhang X, Lin H, Li Y, Yang Z. Multiple kernel learning in protein–protein interaction extraction from biomedical literature. Artif Intell Med 2011;51(3):163–73. 链接1

[62] Yu W, Clyne M, Dolan SM, Yesupriya A, Wulf A, Liu T, et al. GAPscreener: an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique. BMC Bioinf 2008;9(1):205. 链接1

[63] Plaza L, Díaz A, Gervás P. A semantic graph-based approach to biomedical summarisation. Artif Intell Med 2011;53(1):1–14. 链接1

[64] Liu F, Yu H. Learning to rank figures within a biomedical article. PLoS One 2014;9(3):e61567. 链接1

[65] Ruffini G. An algorithmic information theory of consciousness. Neurosci Conscious 2017;3(1):nix019. 链接1

[66] Arsiwalla XD, Herreros I, Verschure P. On three categories of conscious machines. In: Lepora NF, Mura A, Mangan M, Verschure PFMJ, Desmulliez M, Prescott TJ, editors. Biomimetic and biohybrid systems. Cham: Springer; 2016. p. 389–92. 链接1

[67] Christley S, An G. A proposal for augmenting biological model construction with a semi-intelligent computational modeling assistant. Comput Math Organ Theory 2012;18(4):380–403. 链接1

[68] Almog DM, Heisler EM. Computer intuition: guiding scientific research in imaging and oral implantology. J Dent Res 1997;76(10):1684–8. 链接1

[69] Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg 2016;137(5):890e–7e. 链接1

[70] Negoescu R. Conscience and consciousness in biomedical engineering science and practice. In: Proceedings of International Conference on Advancements of Medicine and Health Care through Technology; 2009 Sep 23–26; Cluj-Napoca, Romania; 2009. p. 209–14. 链接1

[71] Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 2006;8:537–65. 链接1

[72] Molla M, Waddell M, Page D, Shavlik J. Using machine learning to design and interpret gene-expression microarrays. AI Mag 2004;25(1):23–44. 链接1

[73] Pham TD, Wells C, Crane DI. Analysis of microarray gene expression data. Curr Bioinform 2006;1(1):37–53. 链接1

[74] Shi TW, Kah WS, Mohamad MS, Moorthy K, Deris S, Sjaugi MF, et al. A review of gene selection tools in classifying cancer microarray data. Curr Bioinform 2017;12(3):202–12. 链接1

[75] Vashistha R, Dangi AK, Kumar A, Chhabra D, Shukla P. Futuristic biosensors for cardiac health care: an artificial intelligence approach. 3. Biotech 2018;8 (8):358. 链接1

[76] Ahmed FE. Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol Cancer 2005;4(1):29. 链接1

[77] Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research–commentary. BioMed Eng Online 2014;13:94. 链接1

[78] Krishnan S, Athavale Y. Trends in biomedical signal feature extraction. Biomed Signal Process Control 2018;43:41–63. 链接1

[79] Hamada M, Zaidan BB, Zaidan AA. A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison. J Med Syst 2018;42(9):162. 链接1

[80] Kehri V, Ingle R, Awale R, Oimbe S. Techniques of EMG signal analysis and classification of neuromuscular diseases. In: Proceedings of the International Conference on Communication and Signal Processing 2016; 2016 Dec 26–27; Lonere, India; 2016. p. 485–91. 链接1

[81] Rai HM, Chatterjee K. A unique feature extraction using MRDWT for automatic classification of abnormal heartbeat from ECG big data with multilayered probabilistic neural network classifier. Appl Soft Comput 2018;72:596–608. 链接1

[82] Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 2013;12(6):563–71. 链接1

[83] Bou Assi E, Nguyen DK, Rihana S, Sawan M. Towards accurate prediction of epileptic seizures: a review. Biomed Signal Process Control 2017;34:144–57. 链接1

[84] Fergus P, Hignett D, Hussain A, Al-Jumeily D, Abdel-Aziz K. Automatic epileptic seizure detection using scalp EEG and advanced artificial intelligence techniques. BioMed Res Int 2015;2015:986736. 链接1

[85] Stacey WC. Seizure prediction is possible—now let’s make it practical. EBioMedicine 2018;27:3–4. 链接1

[86] Kiral-Kornek I, Roy S, Nurse E, Mashford B, Karoly P, Carroll T, et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine 2018;27:103–11. 链接1

[87] Stoitsis J, Valavanis I, Mougiakakou SG, Golemati S, Nikita A, Nikita KS. Computer aided diagnosis based on medical image processing and artificial intelligence methods. Nucl Instrum Methods Phys Res A 2006;569(2):591–5. 链接1

[88] Fasihi MS, Mikhael WB. Overview of current biomedical image segmentation methods. In: Proceedings of 2016 International Conference on Computational Science and Computational Intelligence; 2016 Dec 15–17; Las Vegas, NV, USA; 2016. p. 803–8. 链接1

[89] Jo Y, Cho H, Lee SY, Choi G, Kim G, Min HS, et al. Quantitative phase imaging and artificial intelligence: a review. IEEE J Sel Top Quantum Electron 2019;25 (1):6800914. 链接1

[90] Ghafarpour A, Zare I, Zadeh HG, Haddadnia J, Zadeh FJS, Zadeh ZE, et al. A review of the dedicated studies to breast cancer diagnosis by thermal imaging in the fields of medical and artificial intelligence sciences. Biomed Res 2016;27(2):543–52. 链接1

[91] Personal ultrasound [Internet]. New York: Butterfly Network; c2019 [cited 2019 Jan 17]. Available from: https://english.butterflynetwork.com/. 链接1

[92] Elkin PL, Schlegel DR, Anderson M, Komm J, Ficheur G, Bisson L. Artificial intelligence: bayesian versus heuristic method for diagnostic decision support. Appl Clin Inform 2018;9(2):432–9. 链接1

[93] Safdar S, Zafar S, Zafar N, Khan NF. Machine learning based decision support systems (DSS) for heart disease diagnosis: a review. Artif Intell Rev 2018;50 (4):597–623. 链接1

[94] Haque S, Mital D, Srinivasan S. Advances in biomedical informatics for the management of cancer. Ann NY Acad Sci 2002;980(1):287–97. 链接1

[95] Ibrahim F, Thio THG, Faisal T, Neuman M. The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review. Sensors 2015;15(3):6947–95. 链接1

[96] López-Fernández H, Reboiro-Jato M, Pérez Rodríguez JA, Fdez-Riverola F, Glez-Peña D. The artificial intelligence workbench: a retrospective review. ADCAIJ 2016;5(1):73–85. 链接1

[97] Tran BX, Vu GT, Ha GH, Vuong QH, Ho MT, Vuong TT, et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. J Clin Med 2019;8(3):360. 链接1

[98] Tantin A, Bou Assi E, van Asselt E, Hached S, Sawan M. Predicting urinary bladder voiding by means of a linear discriminant analysis: validation in rats. Biomed Signal Proces Control 2020;55:101667. 链接1

[99] Bou Assi E, Gagliano L, Rihana S, Nguyen DK, Sawan M. Bispectrum features and multilayer perceptron classifier to enhance seizure prediction. Sci Rep 2018;8(1):15491. 链接1

[100] Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn J Radiol 2019;37(1):34–72. 链接1

[101] Martens FMJ, van Kuppevelt HJM, Beekman JAC, Rijkhoff NJM, Heesakkers JPFA. Limited value of bladder sensation as a trigger for conditional neurostimulation in spinal cord injury patients. Neurourol Urodyn 2010;29 (3):395–400. 链接1

[102] Mendez A, Sawan M, Minagawa T, Wyndaele JJ. Estimation of bladder volume from afferent neural activity. IEEE Trans Neural Syst Rehabil Eng 2013;21 (5):704–15. 链接1

[103] Mendez A, Belghith A, Sawan M. A DSP for sensing the bladder volume through afferent neural pathways. IEEE Trans Biomed Circuits Syst 2014;8 (4):552–64. 链接1

[104] Witten IH, Frank E. Data mining: practical machine learning tools and techniques. 2nd ed. San Fransisco: Morgan Kaufmann; 2005. 链接1

[105] Motulsky H, Christopoulos A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. New York: Oxford University Press; 2004. 链接1

[106] Mendez A. Bladder volume decoding from afferent neural activity [dissertation]. Montreal: Polytechnique Montreal; 2013. 链接1

[107] Wiebe S, Eliasziw M, Bellhouse DR, Fallahay C. Burden of epilepsy: the Ontario health survey. Can J Neurol Sci 1999;26(4):263–70. 链接1

[108] Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 2005;46(4):470–2. 链接1

[109] Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain 2007;130(2):314–33. 链接1

[110] Howbert JJ, Patterson EE, Stead SM, Brinkmann B, Vasoli V, Crepeau D, et al. Forecasting seizures in dogs with naturally occurring epilepsy. PLoS One 2014;9(1):e81920. 链接1

[111] BouAssi E, Nguyen DK,Rihana S, SawanM.A functional-geneticscheme for seizure forecasting in canine epilepsy. IEEE Trans Biomed Eng 2018;65(6):1339–48. 链接1

[112] Gagliano L, Bou Assi E, Nguyen DK, Rihana S, Sawan M. Bilateral preictal signature of phase–amplitude coupling in canine epilepsy. Epilepsy Res 2018;139:123–8. 链接1

[113] van Mierlo P, Carrette E, Hallez H, Raedt R, Meurs A, Vandenberghe S, et al. Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 2013;54 (8):1409–18. 链接1

[114] Bou Assi E, Rihana S, Nguyen DK, Sawan M. Effective connectivity analysis of iEEG and accurate localization of the epileptogenic focus at the onset of operculo-insular seizures. Epilepsy Res 2019;152: 42–51. 链接1

相关研究