期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第4期 doi: 10.1016/j.eng.2019.08.017

Pickering乳液的发展趋势——颗粒形态及其应用

a Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
b ICSM, CEA, CNRS, ENSCM, University of Montpellier, Marcoule 30207, France
c Institut Universitaire de France (IUF), Paris 75231, France

收稿日期: 2019-05-14 修回日期: 2019-06-12 录用日期: 2019-08-01 发布日期: 2020-02-15

下一篇 上一篇

摘要

近年来,Pickering乳液因其易于制备和强稳定性的特点引起了人们的广泛关注。与经典乳液不同,在Pickering乳液中,位于液体界面处的固体微粒或纳米颗粒被用作稳定剂,而不是表面活性剂,从而增加了液滴的寿命。此外,与由表面活性剂稳固的乳液相比,Pickering乳液具有更高的稳定性、更低的毒性和刺激反应性。因此,它们可以被认为是具有广泛用途的理想成分,如光催化和新材料的制备。此外,纳米颗粒的形貌对Pickering乳液的稳定性及其潜在利用率有很大的影响。在本文中,我们回顾了近年来关于Pickering乳液的一些研究成果,重点介绍了纳米颗粒的形态,如立方体、椭球体、纳米片、球体、圆柱体、棒状、花生状,如何影响这种乳液的类型和稳定性,以及它们在抗菌活性、蛋白质识别、催化、光催化和水净化等不同领域的应用。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Ramsden W. Separation of solids in the surface-layers of solutions and ‘‘suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)—preliminary account. Proc Royal Soc London 1903;72:156–64. 链接1

[ 2 ] Pickering SU. CXCVI.—emulsions. J Chem Soc Trans 1907;91:2001–21. 链接1

[ 3 ] Norton JE, Norton IT. Designer colloids—towards healthy everyday foods? Soft Matter 2010;6:3735–42. 链接1

[ 4 ] Voorn DJ, Ming W, van Herk AM. Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 2006;39(6):2137–43. 链接1

[ 5 ] Zhang T, Davidson D, Bryant SL, Huh C. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery. In: Proceedings of the SPE Improved oil Recovery Symposium; 2010 Apr 24–28; Tulsa, OH, USA. Richardson: Society of Petroleum Engineers; 2010. 链接1

[ 6 ] Frelichowska J, Bolzinger MA, Pelletier J, Valour JP, Chevalier Y. Topical delivery of lipophilic drugs from o/w Pickering emulsions. Int J Pharm 2009;371(1–2):56–63. 链接1

[ 7 ] Lu X, Zhang H, Li Y, Huang Q. Fabrication of milled cellulose particlesstabilized Pickering emulsions. Food Hydrocoll 2018;77:427–35. 链接1

[ 8 ] Richter AR, Feitosa JPA, Paula HCB, Goycoolea FM, de Paula RCM. Pickering emulsion stabilized by cashew gum-poly-L-lactide copolymer nanoparticles: synthesis, characterization and amphotericin B encapsulation. Colloids Surf B Biointerfaces 2018;164:201–9. 链接1

[ 9 ] Binks BP, Olusanya SO. Phase inversion of colored Pickering emulsions stabilized by organic pigment particle mixtures. Langmuir 2018;34:5040–51. 链接1

[10] Dickinson E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends Food Sci Technol 2012;244–12. 链接1

[11] Aveyard R, Binks BP, Clint JH. Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 2003;100:503–46. 链接1

[12] Levine S, Bowen BD, Partridge SJ. Stabilization of emulsions by fine particles II. Capillary and van der Waals forces between particles. Colloids Surf 1989;38:345–64. 链接1

[13] Binks BP, Horozov TS. Colloidal particles at liquid interfaces. Cambridge: Cambridge University Press; 2006. 链接1

[14] Hunter TN, Pugh RJ, Franks GV, Jameson GJ. The role of particles in stabilising foams and emulsions. Adv Colloid Interface Sci 2008;137(2):57–81. 链接1

[15] Toor A, Feng T, Russell TP. Self-assembly of nanomaterials at fluid interfaces. Eur Phys J E 2016;39:57. 链接1

[16] Velleman L, Sikdar D, Turek VA, Kucernak AR, Roser SJ, Kornyshev AA, et al. Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces. Nanoscale 2016;8(46):19229–41. 链接1

[17] Huang C, Cui M, Sun Z, Liu F, Helms BA, Russell TP. Self-regulated nanoparticle assembly at liquid/liquid interfaces: a route to adaptive structuring of liquids. Langmuir 2017;33(32):7994–8001. 链接1

[18] Shi S, Russell TP. Nanoparticle assembly at liquid–liquid interfaces: from the nanoscale to mesoscale. Adv Mate 2018;30:1–22. 链接1

[19] Chevalier Y, Bolzinger MA. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2013;439:23–34. 链接1

[20] Schrade A, Landfester K, Ziener U. Pickering-type stabilized nanoparticles by heterophase polymerization. Chem Soc Rev 2013;42:6823–39. 链接1

[21] Tang J, Quinlan PJ, Tam KC. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter 2015;11:3512–29. 链接1

[22] Wu J, Ma GH. Recent studies of Pickering emulsions: particles make the difference. Small 2016;12(34):4633–48. 链接1

[23] Yang Y, Fang Z, Chen X, Zhang W, Xie Y, Chen Y, et al. An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications. Front Pharmacol 2017;8:287. 链接1

[24] Levine S, Bowen BD, Partridge SJ. Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface. Colloids Surf 1989;38:325–43. 链接1

[25] Binks BP, Lumsdon SO. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 2000;16:2539–47. 链接1

[26] Binks BP, Murakami R. Phase inversion of particle-stabilized materials from foams to dry water. Nat Mater 2006;5:865–9. 链接1

[27] Binks BP. Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 2002;7:21–41. 链接1

[28] Davies JT, Rideal EK. Interfacial phenomena. J Chem Educ 1964;41(7):A532. 链接1

[29] Style RW, Isa L, Dufresne ER. Adsorption of soft particles at fluid interfaces. Soft Matter 2015;11:7412–9. 链接1

[30] Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids Surf A Physicochem Eng Asp 2006;282:387–401. 链接1

[31] Binks BP, Lumsdon SO. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 2000;16:8622–31. 链接1

[32] Björkegren S, Nordstierna L, Törncrona A, Palmqvist A. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions. J Colloid Interface Sci 2017;487:250–7. 链接1

[33] Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017;46:2091–126. 链接1

[34] Gavrielatos I, Dabirian R, Mohan RS, Shoham O. Oil/water emulsions stabilized by nanoparticles of different wettabilities. J Fluids Eng 2018;141:021301. 链接1

[35] Briggs N, Yegya Raman AK, Barrett L, Brown C. Stable Pickering emulsions using multi-walled carbon nanotubes of varying wettability. Colloids Surf A Physicochem Eng Asp 2018;537:227–35. 链接1

[36] Xiao M, Xu A, Zhang T, Hong L. Tailoring the wettability of colloidal particles for Pickering emulsions via surface modification and roughness. Front Chem 2018;6:225. 链接1

[37] Gelot A, Friesen W, Hamza HA. Emulsification of oil and water in the presence of finely divided solids and surface-active agents. Colloids Surf 1984;12:271–303. 链接1

[38] Tambe DE, Sharma MM. Factors controlling the stability of colloid-stabilized emulsions: I. an experimental investigation. J Colloid Interface Sci 1993;157:244–53. 链接1

[39] Dickinson E. Food emulsions and foams: stabilization by particles. Curr Opin Colloid Interface Sci 2010;15:40–9. 链接1

[40] Binks BP, Fletcher PDI, Holt BL, Kuc O, Beaussoubre P, Wong K. Compositional ripening of particle- and surfactant-stabilised emulsions: a comparison. Phys Chem Chem Phys 2010;12(9):2219–26. 链接1

[41] Lee MN, Chan HK, Mohraz A. Characteristics of Pickering emulsion gels formed by droplet bridging. Langmuir 2011;28:3085–91. 链接1

[42] Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, Balme S, Bechelany M, Miele P. Inverse Pickering emulsion stabilized by exfoliated hexagonal-boron nitride (h-BN). Langmuir 2017;33(46):13394–440. 链接1

[43] Song X, Pei Y, Qiao M, Ma F, Ren H, Zhao Q. Preparation and characterizations of Pickering emulsions stabilized by hydrophobic starch particles. Food Hydrocoll 2015;45:256–63. 链接1

[44] Mwangi WW, Ho KW, Tey BT, Chan ES. Effects of environmental factors on the physical stability of Pickering-emulsions stabilized by chitosan particles. Food Hydrocoll 2016;60:543–50. 链接1

[45] Frelichowska J, Bolzinger MA, Chevalier Y. Effects of solid particle content on properties of o/w Pickering emulsions. J Colloid Interface Sci 2010;351:348–56. 链接1

[46] Arditty S, Whitby CP, Binks BP, Schmitt V, Leal-Calderon F. Some general features of limited coalescence in solid-stabilized emulsions. Eur Phys J E 2003;12(2):355. 链接1

[47] Guillot S, Bergaya F, de Azevedo C, Warmont F, Tranchant JF. Internally structured Pickering emulsions stabilized by clay mineral particles. J Colloid Interface Sci 2009;333:563–9. 链接1

[48] He Y, Wu F, Sun X, Li R, Guo Y, Li C, et al. Factors that affect Pickering emulsions stabilized by graphene oxide. ACS Appl Mater Interfaces 2013;5:4843–55. 链接1

[49] Dapcˇevic´ Hadnadev T, Dokic´ P, Krstonošic´ V, Hadnadev M. Influence of oil phase concentration on droplet size distribution and stability of oil-in-water emulsions. Eur J Lipid Sci Technol 2013;115:313–21. 链接1

[50] Whitby CP, Lotte L, Lang C. Structure of concentrated oil-in-water Pickering emulsions. Soft Matter 2012;8:7784–9. 链接1

[51] Arditty S, Schmitt V, Giermanska-Kahn J, Leal-Calderon F. Materials based on solid-stabilized emulsions. J Colloid Interface Sci 2004;275:659–64. 链接1

[52] Zhai X, Efrima S. Chemical and physical aspects of macroemulsions stabilized by interfacial colloids. J Phys Chem 1996;100:11019–28. 链接1

[53] Wiley RM. Limited coalescence of oil droplets in coarse oil-in-water emulsions. J Colloid Sci 1954;9:427–37. 链接1

[54] Thickett SC, Zetterlund PB. Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: influence of oil phase polarity. J Colloid Interface Sci 2015;442:67–74. 链接1

[55] Liu K, Jiang J, Cui Z, Binks BP. pH-responsive Pickering emulsions stabilized by silica nanoparticles in combination with a conventional zwitterionic surfactant. Langmuir 2017;33:2296–305. 链接1

[56] Hao Y, Liu Y, Yang R, Zhang X, Liu J, Yang H. A pH-responsive TiO2-based Pickering emulsion system for in situ catalyst recycling. Chinese Chem Lett 2018;29(6):778–82. 链接1

[57] Alison L, Rühs PA, Tervoort E, Teleki A, Zanini M, Isa L, et al. Pickering and network stabilization of biocompatible emulsions using chitosan-modified silica nanoparticles. Langmuir 2016;32:13446–57. 链接1

[58] Ren G, Wang M, Wang L, Wang Z, Chen Q, Xu Z, et al. Dynamic covalent silica nanoparticles for pH-switchable Pickering emulsions. Langmuir 2018;34:5798–806. 链接1

[59] Saari H, Heravifar K, Rayner M, Wahlgren M. Preparation and characterization of starch particles for use in Pickering mulsions. Cereal Chem 2016;93:116–24. 链接1

[60] Whitby CP, Khairul Anwar H, Hughes J. Destabilising Pickering emulsions by drop flocculation and adhesion. J Colloid Interface Sci 2016;465:158–64. 链接1

[61] Thompson KL, Derry MJ, Hatton FL, Armes SP. Long-term stability of n-alkanein-water Pickering nanoemulsions: effect of aqueous solubility of droplet phase on Ostwald ripening. Langmuir 2018;34:9289–97. 链接1

[62] Wu T, Wang H, Jing B, Liu F, Burns PC, Na C. Multi-body coalescence in Pickering emulsions. Nat Commun 2015;6:1–9. 链接1

[63] Otero J, Meeker S, Clegg PS. Compositional ripening of particle-stabilized drops in a three-liquid system. Soft Matter 2018;14:3783–90. 链接1

[64] Chen T, Colver PJ, Bon SAF. Organic–inorganic hybrid hollow spheres prepared from TiO2—stabilized Pickering emulsion polymerization. Adv Mater 2007;19:2286–9. 链接1

[65] Zhao Y, Wang H, Song X, Du Q. Fabrication of two kinds of polymer microspheres stabilized by modified titania during Pickering emulsion polymerization. Macromol Chem Phys 2010;211:2517–29. 链接1

[66] Kim YJ, Liu YD, Seo Y, Choi HJ. Pickering-emulsion-polymerized polystyrene/ Fe2O3 composite particles and their magnetoresponsive characteristics. Langmuir 2013;29:4959–65. 链接1

[67] Wei Z, Wang C, Zou S, Liu H, Tong Z. Fe2O3 nanoparticles as particulate emulsifier: preparation of magnetic and biocompatible PLGA microcapsules. Colloids Surf A Physicochem Eng Asp 2011;392:116–23. 链接1

[68] Ahn WJ, Jung HS, Choi HJ. Pickering emulsion polymerized smart magnetic poly(methyl methacrylate)/Fe2O3 composite particles and their stimulusresponse. RSC Adv 2015;5:23094–100. 链接1

[69] Binks BP, Lumsdon SO. Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 2001;17:4540–7. 链接1

[70] Nallamilli T, Binks BP, Mani E, Basavaraj MG. Stabilization of Pickering emulsions with oppositely charged latex particles: influence of various parameters and particle arrangement around droplets. Langmuir 2015;31 (41):11200–8. 链接1

[71] Creighton MA, Ohata Y, Miyawaki J, Bose A, Hurt RH. Two-dimensional materials as emulsion stabilizers: interfacial thermodynamics and molecular barrier properties. Langmuir 2014;30:3687–96. 链接1

[72] Xu J, Antonietti M. The performance of nanoparticulate graphitic carbon nitride as an amphiphile. J Am Chem Soc 2017;139:6026–9. 链接1

[73] Inam M, Jones JR, Pérez-Madrigal MM, Arno MC, Dove AP, O’Reilly RK. Controlling the size of two-dimensional polymer platelets for water-in-water emulsifiers. ACS Cent Sci 2018;4:63–70. 链接1

[74] Yan S, Zou H, Chen S, Xue N, Yang H. Janus mesoporous silica nanosheets with perpendicular mesochannels: affording highly accessible reaction interfaces for enhanced biphasic catalysis. Chem Commun 2018;54:10455–8. 链接1

[75] De Folter JWJ, Hutter EM, Castillo SIR, Klop KE, Philipse AP, Kegel WK. Particle shape anisotropy in Pickering emulsions: cubes and peanuts. Langmuir 2013;30(4):955–64. 链接1

[76] Yang T, Wei L, Jing L, Liang J, Zhang X, Tang M, et al. Dumbbell-shaped Bicomponent mesoporous Janus solid nanoparticles for biphasic interface catalysis. Angew Chem–Int Ed 2017;56:8459–63. 链接1

[77] De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science 2013;339(6119):535–9. 链接1

[78] Menner A, Verdejo R, Shaffer M, Bismarck A. Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials: poly-Pickering-foams. Langmuir 2007;23:2398–403. 链接1

[79] Chen W, Liu X, Liu Y, Kim HI. Novel synthesis of self-assembled CNT microcapsules by O/W Pickering emulsions. Mater Lett 2010;64:2589–92. 链接1

[80] Fujii S, Okada M, Furuzono T. Hydroxyapatite nanoparticles as stimulusresponsive particulate emulsifiers and building block for porous materials. J Colloid Interface Sci 2007;315:287–96. 链接1

[81] Capron I, Cathala B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 2013;14:291–6. 链接1

[82] Madivala B, Vandebril S, Fransaer J, Vermant J. Exploiting particle shape in solid stabilized emulsions. Soft Matter 2009;5:1717–27. 链接1

[83] Li X, Li J, Gong J, Kuang Y, Mo L, Song T. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydr Polym 2018;183:303–10. 链接1

[84] De Folter JWJ, van Ruijven MWM, Velikov KP. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter 2012;8:6807–15. 链接1

[85] Feng Y, Lee Y. Surface modification of zein colloidal particles with sodium caseinate to stabilize oil-in-water Pickering emulsion. Food Hydrocoll 2016;56:292–302. 链接1

[86] Ashby NP, Binks BP. Pickering emulsions stabilised by Laponite clay particles. Phys Chem Chem Phys 2000;2:5640–6. 链接1

[87] Bon SAF, Colver PJ. Pickering miniemulsion polymerization using laponite clay as a stabilizer. Langmuir 2007;23:8316–22. 链接1

[88] Dinkgreve M, Velikov KP, Bonn D. Stability of LAPONITE ® -stabilized highinternal phase Pickering emulsions under shear. Phys Chem Chem Phys2016;18:22973–7. 链接1

[89] Teixeira RFA, McKenzie HS, Boyd AA, Bon SAF. Pickering emulsionpolymerization using laponite clay as stabilizer to prepare armored ‘‘soft”polymer latexes. Macromolecules 2011;44:7415–22. 链接1

[90] Luo J, Zeng M, Peng B, Tang Y, Zhang L, Wang P, et al. Electrostatic-drivendynamic jamming of 2D nanoparticles at interfaces for controlled moleculardiffusion. Angew Chem 2018;130(36):11926–31. 链接1

[91] Yang F, Liu S, Xu J, Lan Q, Wei F, Sun D. Pickering emulsions stabilized solelyby layered double hydroxides particles: the effect of salt on emulsionformation and stability. J Colloid Interface Sci 2006;302(1):159–69. 链接1

[92] Zhang N, Zhang L, Sun D. Influence of emulsification process on the propertiesof Pickering emulsions stabilized by layered double hydroxide particles.Langmuir 2015;31:4619–26. 链接1

[93] Binks BP, Lumsdon SO. Transitional phase inversion of solid-stabilizedemulsions using particle mixtures. Langmuir 2000;16:3748–56. 链接1

[94] Binks BP, Clint JH. Solid wettability from surface energy components:relevance to Pickering emulsions. Langmuir 2002;18:1270–3. 链接1

[95] Zhu Y, Fu T, Liu K, Lin Q, Pei X, Jiang J, et al. Thermo-responsive Pickeringemulsions stabilized by silica nanoparticles in combination with alkylpolyoxyethylene ether nonionic surfactant. Langmuir 2017;33(23):5724–33. 链接1

[96] Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. Graphene oxide sheets atinterfaces. J Am Chem Soc 2010;132:8180–6. 链接1

[97] Xie P, Ge X, Fang B, Li Z, Liang Y, Yang C. Pickering emulsion polymerization ofgraphene oxide-stabilized styrene. Colloid Polym Sci 2013;291(7):1631–9. 链接1

[98] Zheng Z, Zheng X, Wang H, Du Q. Macroporous graphene oxide–polymercomposite prepared through Pickering high internal phase emulsions. ACSAppl Mater Interfaces 2013;5:7974–82. 链接1

[99] Fei X, Xia L, Chen M, Wei W, Luo J, Liu X. Preparation and application of water-in-oil emulsions stabilized by modified graphene oxide. Materials2016;9:731. 链接1

[100] Nagarajan S, Abessolo Ondo D, Gassara S, Bechelany M, Balme S, Miele P, et al.Porous gelatin membrane obtained from Pickering emulsions stabilized bygraphene oxide. Langmuir 2018;34:1542–9. 链接1

[101] Gonzalez-Ortiz D, Pochat-Bohatier C, Gassara S, Cambedouzou J, BechelanyM, Miele P. Development of novel h-BNNS/PVA porous membranes viaPickering emulsion templating. Green Chem 2018;20:4319–29. 链接1

[102] Kim F, Cote LJ, Huang J. Graphene oxide: surface activity and two-dimensional assembly. Adv Mater 2010;22:1954–8. 链接1

[103] Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, Bechelany M, Miele P.Pickering emulsions stabilized with two-dimensional (2D) materials: acomparative study. Colloids Surf A Physicochem Eng Asp 2019;563:183–92. 链接1

[104] Hou H, Li J, Fouth J, Li X. Interfacial activity of amine-functionalizedpolyhedral oligomeric silsesquioxanes (POSS): a simple strategy tostructure liquids. Angew Chem Int Ed 2019;131(30):10248–53. 链接1

[105] Zhao T, Zhu X, Hung CT, Wang P, Elzatahry A, Al-Khalaf AA, et al. Spatialisolation of carbon and silica in a single Janus mesoporous nanoparticle withtunable amphiphilicity. J Am Chem Soc 2018;140:10009–15. 链接1

[106] Nonomura Y, Komura S, Tsujii K. Adsorption of disk-shaped Janus beads atliquid–liquid interfaces. Langmuir 2004;20:11821–3. 链接1

[107] Qi L, Luo Z, Lu X. Facile synthesis of starch-based nanoparticle stabilizedPickering emulsion: its pH-responsive behavior and application forrecyclable catalysis. Green Chem 2018;20:1538–50. 链接1

[108] Leclercq L, Mouret A, Proust A, Schmitt V, Bauduin P, Aubry JM, et al.Pickering emulsion stabilized by catalytic polyoxometalate nanoparticles: anew effective medium for oxidation reactions. Chem—A Eur J 2012;18:14352–8. 链接1

[109] Liu D, Xue N, Wei L, Zhang Y, Qin Z, Li X, et al. Surfactant assembly withinPickering emulsion droplets for fabrication of interior-structuredmesoporous carbon microspheres. Angew Chem Int Ed 2018;57:10899–904. 链接1

[110] Huo J, Marcello M, Garai A, Bradshaw D. MOF-polymer compositemicrocapsules derived from Pickering emulsions. Adv Mater2013;25:2717–22. 链接1

[111] Xu Z, Xiao Z, Shen Y, Li H. Compartmentalization within self-assembledmetal–organic framework nanoparticles for tandem reactions. Adv FunctMater 2018;28(34):1–9. 链接1

[112] Tang M, Wang X, Wu F, Liu Y, Zhang S, Pang X, et al. Aunanoparticle/graphene oxide hybrids as stabilizers for Pickering emulsions and Au nanoparticle/graphene oxide@polystyrene microspheres. Carbon N Y2014;71:238–48. 链接1

[113] Wu W, Gao S, Tu W, Chen J, Zhang P. Intensified photocatalytic degradation ofnitrobenzene by Pickering emulsion of ZnO nanoparticles. Particuology2010;8:453–7. 链接1

[114] Wang YW, Chen CW, Hsieh JH, Tseng WJ. Preparation of Ag/TiO 2 compositefoams via Pickering emulsion for bactericide and photocatalysis. Ceram Int2017;43:S797–801. 链接1

[115] Zhai W, Li G, Yu P, Yang L, Mao L. Silver phosphate/carbon nanotube-stabilized Pickering emulsion for highly efficient photocatalysis. J Phys ChemC 2013;117:15183–91. 链接1

[116] Mohaghegh N, Tasviri M, Rahimi E, Gholami MR. A novel p–n junctionAg 3 PO 4 /BiPO 4 -based stabilized Pickering emulsion for highly efficientphotocatalysis. RSC Adv 2015;5:12944–55. 链接1

[117] Zhang S, Xu J, Hu J, Cui C, Liu H. Interfacial growth of TiO 2 -rGO composite byPickering emulsion for photocatalytic degradation. Langmuir2017;33:5015–24. 链接1

[118] Zhai W, Wu Z, Wang X, Song P, He Y, Wang R. Preparation of epoxy-acrylatecopolymer@nano-TiO 2 Pickering emulsion and its antibacterial activity. ProgOrg Coatings 2015;87:122–8. 链接1

[119] Wang J, Li X, Chen Z, Chen M. Fabrication of sustained-release andantibacterial citronella oil-loaded composite microcapsules based onPickering emulsion templates. J Appl Polym Sci 2018;135(25):46386. 链接1

[120] Li J, Xu X, Chen Z, Wang T, Lu Z, Hu W, et al. Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with thymol as an antibacterial deliverysystem. Carbohydr Polym 2018;200:416–26. 链接1

[121] Xu J, Sun Y, Chen J, Zhong S. Novel application of amphiphilic blockcopolymers in Pickering emulsions and selective recognition of proteins. NewJ Chem 2018;42:3028–34. 链接1

[122] Yang T, Hu Y, Wang C, Binks BP. Fabrication of hierarchical macroporousbiocompatible scaffolds by combining Pickering high internal phaseemulsion templates with three-dimensional printing. ACS Appl MaterInterfaces 2017;9:22950–8. 链接1

[123] Hu Y, Liu S, Li X, Yuan T, Zou X, He Y, et al. Facile preparation of biocompatiblepoly(L-lactic acid)-modified halloysite nanotubes/poly( e -caprolactone)porous scaffolds by solvent evaporation of Pickering emulsion templates. JMater Sci 2018;53:14774–88. 链接1

[124] Chen Y, Wang Y, Shi X, Jin M, Cheng W, Ren L, et al. Hierarchical andreversible assembly of graphene oxide/polyvinyl alcohol hybrid stabilizedPickering emulsions and their templating for macroporous compositehydrogels. Carbon N Y 2017;111:38–47. 链接1

[125] Zhang M, Wei L, Chen H, Du Z, Binks BP, Yang H. Compartmentalized dropletsfor continuous flow liquid–liquid interface catalysis. J Am Chem Soc2016;138(32):10173–83. 链接1

[126] Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater2005;4:518. 链接1

[127] Zhang M, Ettelaie R, Zhang S, Yan T. Ionic liquid droplet microreactor forcatalysis reactions not at equilibrium. J Am Chem Soc 2017;139(48):17387–96. 链接1

[128] Liu X, Miller II AL, Waletzki BE, Yaszemski MJ, Lu L. Novel biodegradable poly(propylene fumarate)-co-poly(L-lactic acid) porous scaffolds fabricated byphase separation for tissue engineering applications. RSC Adv2015;5:21301–9. 链接1

[129] Jiang H, Hong L, Li Y, Ngai T. All-silica submicrometer colloidosomes for cargoprotection and tunable release. Angew Chem—Int Ed 2018;57:11662–6. 链接1

[130] Cong Y, Li Q, Chen M, Wu L. Synthesis of dual-stimuli-responsivemicrocontainers with two payloads in different storage spaces forpreprogrammable release. Angew Chem Int Ed 2017;56:3552–6. 链接1

[131] Xia Y, Wu J, Wei W, Du Y, Wan T, Ma X, et al. Exploiting the pliability andlateral mobility of Pickering emulsion for enhanced vaccination. Nat Mater2018;17:187–94. 链接1

[132] Gobbo P, Patil AJ, Li M, Harniman R, Briscoe WH, Mann S. Programmedassembly of synthetic protocells into thermoresponsive prototissues. NatMater 2018;17:1145–53. 链接1

[133] Patra D, Pagliuca C, Subramani C, Samanta B, Agasti SS, Zainalabdeen N, et al.Molecular recognition at the liquid–liquid interface of colloidalmicrocapsules. Chem Commun 2009;28(28):4248–50. 链接1

[134] Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogenevolution catalysis from chemically exfoliated metallic MoS 2 nanosheets. JAm Chem Soc 2013;135:10274–7. 链接1

[135] Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, et al. Co-doped MoS 2 nanosheets withthe dominant CoMoS phase coated on carbon as an excellent electrocatalystfor hydrogen evolution. ACS Appl Mater Interfaces 2015;7:27242–53. 链接1

[136] MacDonald SM, Fletcherb PDI, Cui Z, Opallo M, Chen J, Marken F. Carbonnanoparticle stabilised liquid|liquid micro-interfaces for electrochemicallydriven ion-transfer processes. Electrochim Acta 2007;53:1175–81. 链接1

[137] Marken F, Watkins JD, Collins AM. Ion-transfer- and photo-electrochemistryat liquid|liquid|solid electrode triple phase boundary junctions: perspectives.Phys Chem Chem Phys 2011;13:10036–47. 链接1

[138] Cecchini MP, Turek VA, Briotvsek G, Demetriadou A. Heavy metal sensingusing self-assembled nanoparticles at a liquid-liquid interface. Adv OptMater 2014;2:966–77. 链接1

[139] Ouyang L, Li D, Zhu L, Yang W, Tang H. A new plasmonic Pickering emulsionbased SERS sensor for in situ reaction monitoring and kinetic study. J MaterChem C 2016;4:736–44. 链接1

[140] Harman CLG, Patel MA, Guldin S, Davies GL. Recent developments inPickering emulsions for biomedical applications. Curr Opin Colloid InterfaceSci 2019;39:173–89. 链接1

相关研究